On isomorphisms of Banach spaces of continuous functions

被引:0
|
作者
Grzegorz Plebanek
机构
[1] Uniwersytet Wrocławski,Instytut Matematyczny
来源
关键词
Banach Space; Compact Space; Continuous Image; Nonempty Open Subset; Isomorphic Embedding;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if K and L are compact spaces and C(K) and C(L) are isomorphic as Banach spaces, then K has a π-base consisting of open sets U such that Ū is a continuous image of some compact subspace of L. This sheds new light on isomorphic classes of spaces of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C({[0,1]^\kappa })$$\end{document} and spaces C(K) where K is Corson compact.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 50 条