Universally prestarlike functions as convolution multipliers

被引:0
|
作者
Stephan Ruscheweyh
Luis Salinas
机构
[1] Universität Würzburg,Mathematisches Institut
[2] Universidad Técnica F. Santa María,Departamento de Informática
来源
Mathematische Zeitschrift | 2009年 / 263卷
关键词
Universally prestarlike functions; Universally convex functions; Convolution invariance; Bernardi-Libera transform; Primary 30C45; 30E05; Secondary 44A60; 33C05;
D O I
暂无
中图分类号
学科分类号
摘要
Universally prestarlike functions (of order α ≤ 1) in the slit domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Lambda:=\mathbb{C}{\setminus}[1,\infty]}$$\end{document} have recently been introduced in Ruscheweyh et al. (Israel J Math, to appear). This notation generalizes the corresponding one for functions in the unit disk \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{D}}$$\end{document} (and other circular domains in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document}). In this paper we study the behaviour of universally prestarlike functions under the Hadamard product. In particular it is shown that these function classes (with α fixed), are closed under convolution, and that their members, as Hadamard multipliers, also preserve the prestarlikeness (of the same order) of functions in arbitrary circular domains containing the origin.
引用
收藏
相关论文
共 50 条
  • [1] Universally prestarlike functions as convolution multipliers
    Ruscheweyh, Stephan
    Salinas, Luis
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (03) : 607 - 617
  • [2] A note on universally prestarlike functions
    Shanmugam, Tirunelveli Nellaiappan
    Mary, Joseph Lourthu
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 53 - 60
  • [3] PROPERTIES OF THE CONVOLUTION WITH PRESTARLIKE FUNCTIONS
    Dziok, Jacek
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (06) : 1685 - 1694
  • [4] PROPERTIES OF THE CONVOLUTION WITH PRESTARLIKE FUNCTIONS
    Jacek DZIOK
    [J]. Acta Mathematica Scientia, 2013, 33 (06) : 1685 - 1694
  • [5] Completely monotone sequences and universally prestarlike functions
    Stephan Ruscheweyh
    Luis Salinas
    Toshiyuki Sugawa
    [J]. Israel Journal of Mathematics, 2009, 171 : 285 - 304
  • [6] Completely monotone sequences and universally prestarlike functions
    Ruscheweyh, Stephan
    Salinas, Luis
    Sugawa, Toshiyuki
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) : 285 - 304
  • [7] UPPER BOUNDS OF SECOND HANKEL DETERMINANT FOR UNIVERSALLY PRESTARLIKE FUNCTIONS
    Ahuja, Om
    Kasthuri, Murugesan
    Murugusundaramoorthy, Gangadharan
    Vijaya, Kaliappan
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (05) : 1019 - 1030
  • [8] Second Hankel determinant for universally prestarlike functions related with exponential function
    H. Özlem Güney
    G. Murugusundaramoorthy
    K. Vijaya
    [J]. Afrika Matematika, 2021, 32 : 685 - 694
  • [9] Second Hankel determinant for universally prestarlike functions related with exponential function
    Guney, H. Ozlem
    Murugusundaramoorthy, G.
    Vijaya, K.
    [J]. AFRIKA MATEMATIKA, 2021, 32 (5-6) : 685 - 694
  • [10] CONVOLUTION MULTIPLIERS AND STARLIKE FUNCTIONS
    SHEILSMALL, T
    SILVERMAN, H
    SILVIA, E
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1982, 41 : 181 - 192