Gas-assisted microfluidic step-emulsification for generating micron- and submicron-sized droplets

被引:0
|
作者
Biao Huang
Xinjin Ge
Boris Y. Rubinstein
Xianchun Chen
Lu Wang
Huiying Xie
Alexander M. Leshansky
Zhenzhen Li
机构
[1] Beijing Institute of Technology,Department of Aerospace Engineering
[2] No. 5 ZhongGuanCunNan Street,State Key Laboratory of Engines
[3] HaiDian District,School of Chemistry and Chemical Engineering
[4] Tianjin University,undefined
[5] Stowers Institute for Medical Research,undefined
[6] Beijing Institute of Technology,undefined
[7] Department of Chemical Engineering,undefined
[8] Technion – Israel Institute of Technology,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Micron- and submicron-sized droplets have extensive applications in biomedical diagnosis and drug delivery. Moreover, accurate high-throughput analysis requires a uniform droplet size distribution and high production rates. Although the previously reported microfluidic coflow step-emulsification method can be used to generate highly monodispersed droplets, the droplet diameter (d) is constrained by the microchannel height (b), d≳3b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\gtrsim 3b$$\end{document}, while the production rate is limited by the maximum capillary number of the step-emulsification regime, impeding emulsification of highly viscous liquids. In this paper, we report a novel, gas-assisted coflow step-emulsification method, where air serves as the innermost phase of a precursor hollow-core air/oil/water emulsion. Air gradually diffuses out, producing oil droplets. The size of the hollow-core droplets and the ultrathin oil layer thickness both follow the scaling laws of triphasic step-emulsification. The minimal droplet size attains d≈1.7b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\approx 1.7b$$\end{document}, inaccessible in standard all-liquid biphasic step-emulsification. The production rate per single channel is an order-of-magnitude higher than that in the standard all-liquid biphasic step-emulsification and is also superior to alternative emulsification methods. Due to low gas viscosity, the method can also be used to generate micron- and submicron-sized droplets of high-viscosity fluids, while the inert nature of the auxiliary gas offers high versatility.
引用
收藏
相关论文
共 19 条
  • [1] Gas-assisted microfluidic step-emulsification for generating micron- and submicron-sized droplets
    Huang, Biao
    Ge, Xinjin
    Rubinstein, Boris Y. Y.
    Chen, Xianchun
    Wang, Lu
    Xie, Huiying
    Leshansky, Alexander M. M.
    Li, Zhenzhen
    MICROSYSTEMS & NANOENGINEERING, 2023, 9 (01)
  • [2] Centrifuge-aided micromolding of micron- and submicron-sized patterns
    Ju, Hong-Fei
    Ning, Kaijie
    Lu, Kathy
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (02) : 637 - 645
  • [3] Size-dependent plasticity in micron- and submicron-sized ionic crystals
    Zou, Yu
    Spolenak, Ralph
    PHILOSOPHICAL MAGAZINE LETTERS, 2013, 93 (07) : 431 - 438
  • [4] Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices
    Zhan, Wei
    Liu, Ziwei
    Jiang, Shaokun
    Zhu, Chunying
    Ma, Youguang
    Fu, Taotao
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 106 : 469 - 481
  • [5] Micron- and submicron-sized surface patterning of silica glass by LIBWE method
    Ding, XM
    Kawaguchi, Y
    Sato, T
    Narazaki, A
    Kurosaki, R
    Niino, H
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 166 (1-3) : 129 - 133
  • [6] A microfluidic technique for generating monodisperse submicron-sized drops
    Sang, Yann Yip Cheung
    Lorenceau, Elise
    Wahl, Sebastian
    Stoffel, Maximilien
    Angelescu, Dan E.
    Hoehler, Reinhard
    RSC ADVANCES, 2013, 3 (07) : 2330 - 2335
  • [7] Radiolabeling Strategies of Micron- and Submicron-Sized Core-Shell Carriers for In Vivo Studies
    Zyuzin, Mikhail, V
    Antuganov, Dmitrii
    Tarakanchikova, Yana, V
    Karpov, Timofey E.
    Mashel, Tatiana, V
    Gerasimova, Elena N.
    Peltek, Oleksii O.
    Alexandre, Nomine
    Bruyere, Stephanie
    Kondratenko, Yulia A.
    Muslimov, Albert R.
    Timin, Alexander S.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (28) : 31137 - 31147
  • [8] Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins
    Jonovic, Marko
    Zuza, Milena
    Dordevic, Verica
    Sekuljica, Natasa
    Milivojevic, Milan
    Jugovic, Branimir
    Bugarski, Branko
    Knezevic-Jugovic, Zorica
    CATALYSTS, 2021, 11 (03) : 1 - 17
  • [9] Microfluidic separation of satellite droplets as the basis of a monodispersed micron and submicron emulsification system
    Tan, YC
    Lee, AP
    LAB ON A CHIP, 2005, 5 (10) : 1178 - 1183
  • [10] Comparative evaluation of dental resin composites based on micron- and submicron-sized monomodal glass filler particles
    Valente, Lisia L.
    Peralta, Sonia L.
    Ogliari, Fabricio A.
    Cavalcante, Larissa M.
    Moraes, Rafael R.
    DENTAL MATERIALS, 2013, 29 (11) : 1182 - 1187