Uniqueness and Examples of Compact Toric Sasaki-Einstein Metrics

被引:0
|
作者
Koji Cho
Akito Futaki
Hajime Ono
机构
[1] Kyushu University,Department of Mathematics
[2] Tokyo Institute of Technology,Department of Mathematics
来源
关键词
Chern Class; Einstein Metrics; Constant Scalar Curvature; Toric Diagram; Sasaki Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
In [11] it was proved that, given a compact toric Sasaki manifold with positive basic first Chern class and trivial first Chern class of the contact bundle, one can find a deformed Sasaki structure on which a Sasaki-Einstein metric exists. In the present paper we first prove the uniqueness of such Einstein metrics on compact toric Sasaki manifolds modulo the action of the identity component of the automorphism group for the transverse holomorphic structure, and secondly remark that the result of [11] implies the existence of compatible Einstein metrics on all compact Sasaki manifolds obtained from the toric diagrams with any height, or equivalently on all compact toric Sasaki manifolds whose cones have flat canonical bundle. We further show that there exists an infinite family of inequivalent toric Sasaki-Einstein metrics on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^5 \sharp k(S^2 \times S^3)$$\end{document} for each positive integer k.
引用
收藏
页码:439 / 458
页数:19
相关论文
共 50 条
  • [1] Uniqueness and examples of compact toric Sasaki-Einstein metrics
    Cho, Koji
    Futaki, Akito
    Ono, Hajime
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (02) : 439 - 458
  • [2] UNIQUENESS OF SASAKI-EINSTEIN METRICS
    Nitta, Yasufumi
    Sekiya, Ken'ichi
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2012, 64 (03) : 453 - 468
  • [3] Some Examples of Toric Sasaki-Einstein Manifolds
    van Coevering, Craig
    [J]. RIEMANNIAN TOPOLOGY AND GEOMETRIC STRUCTURES ON MANIFOLDS, 2009, 271 : 185 - 232
  • [4] Toric Sasaki-Einstein metrics on S2xS3
    Martelli, D
    Sparks, J
    [J]. PHYSICS LETTERS B, 2005, 621 (1-2) : 208 - 212
  • [5] Hidden symmetries on toric Sasaki-Einstein spaces
    Slesar, V.
    Visinescu, M.
    Vilcu, G. E.
    [J]. EPL, 2015, 110 (03)
  • [6] Killing forms and toric Sasaki-Einstein spaces
    Slesar, Vladimir
    Visinescu, Mihai
    Vilcu, Gabriel Eduard
    [J]. XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [7] NEW EXAMPLES OF SASAKI-EINSTEIN MANIFOLDS
    Mabuchi, Toshiki
    Nakagawa, Yasuhiro
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (02) : 243 - 252
  • [8] Toric Sasaki-Einstein manifolds and Heun equations
    Oota, T
    Yasui, Y
    [J]. NUCLEAR PHYSICS B, 2006, 742 : 275 - 294
  • [9] Obstructions to the existence of Sasaki-Einstein metrics
    Gauntlett, Jerome P.
    Martelli, Dario
    Sparks, James
    Yau, Shing-Tung
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (03) : 803 - 827
  • [10] TRANSVERSE KAHLER GEOMETRY OF SASAKI MANIFOLDS AND TORIC SASAKI-EINSTEIN MANIFOLDS
    Futaki, Akito
    Ono, Hajime
    Wang, Guofang
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2009, 83 (03) : 585 - 635