Gibbs–Jaynes Entropy Versus Relative Entropy

被引:0
|
作者
M. Meléndez
P. Español
机构
[1] Universidad Nacional de Educación a Distancia,Departamento de Física Fundamental
来源
关键词
Gibbs–Jaynes entropy; Kullback–Leibler divergence; Relative entropy; Maximum entropy formalism; Nonequilibrium statistical mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
The maximum entropy formalism developed by Jaynes determines the relevant ensemble in nonequilibrium statistical mechanics by maximising the entropy functional subject to the constraints imposed by the available information. We present an alternative derivation of the relevant ensemble based on the Kullback–Leibler divergence from equilibrium. If the equilibrium ensemble is already known, then calculation of the relevant ensemble is considerably simplified. The constraints must be chosen with care in order to avoid contradictions between the two alternative derivations. The relative entropy functional measures how much a distribution departs from equilibrium. Therefore, it provides a distinct approach to the calculation of statistical ensembles that might be applicable to situations in which the formalism presented by Jaynes performs poorly (such as non-ergodic dynamical systems).
引用
收藏
页码:93 / 105
页数:12
相关论文
共 50 条
  • [1] Gibbs-Jaynes Entropy Versus Relative Entropy
    Melendez, M.
    Espanol, P.
    JOURNAL OF STATISTICAL PHYSICS, 2014, 155 (01) : 93 - 105
  • [2] Relative entropy and identification of Gibbs measures in dynamical systems
    Chazottes, JR
    Floriani, E
    Lima, R
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (3-4) : 697 - 725
  • [3] Relative Entropy and Identification of Gibbs Measures in Dynamical Systems
    J.-R. Chazottes
    E. Floriani
    R. Lima
    Journal of Statistical Physics, 1998, 90 : 697 - 725
  • [4] Gibbs entropy and irreversibility
    Pérez-Madrid, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (3-4) : 339 - 346
  • [5] Gibbs entropy and dynamics
    Piftankin, G.
    Treschev, D.
    CHAOS, 2008, 18 (02)
  • [6] Relative entropy equals bulk relative entropy
    Daniel L. Jafferis
    Aitor Lewkowycz
    Juan Maldacena
    S. Josephine Suh
    Journal of High Energy Physics, 2016
  • [7] Relative entropy equals bulk relative entropy
    Jafferis, Daniel L.
    Lewkowycz, Aitor
    Maldacena, Juan
    Suh, S. Josephine
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06):
  • [8] WAVE ENTROPY - A DERIVATION BY JAYNES PRINCIPLE
    KAUFMAN, AN
    PHYSICS OF FLUIDS, 1986, 29 (07) : 2326 - 2326
  • [9] RELATIVE ENTROPY AND RELATIVE CONDITIONAL ENTROPY WITH INFINITE PARTITIONS
    Asadiyan, Mohamad Hosein
    Ebrahimzadeh, Abolfazl
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2015, (35): : 319 - 326
  • [10] Entanglement entropy, relative entropy and duality
    Moitra, Upamanyu
    Soni, Ronak M.
    Trivedi, Sandip P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)