Distributed reconfiguration of 2D lattice-based modular robotic systems

被引:0
|
作者
Ferran Hurtado
Enrique Molina
Suneeta Ramaswami
Vera Sacristán
机构
[1] Universitat Politècnica de Catalunya,Departament de Matemàtica Aplicada II
[2] Rutgers University,Department of Computer Science
来源
Autonomous Robots | 2015年 / 38卷
关键词
Self-organizing robots; Distributed reconfiguration; Universal reconfiguration;
D O I
暂无
中图分类号
学科分类号
摘要
We prove universal reconfiguration (i.e., reconfiguration between any two robotic systems with the same number of modules) of 2-dimensional lattice-based modular robots by means of a distributed algorithm. To the best of our knowledge, this is the first known reconfiguration algorithm that applies in a general setting to a wide variety of particular modular robotic systems, and holds for both square and hexagonal lattice-based 2-dimensional systems. All modules apply the same set of local rules (in a manner similar to cellular automata), and move relative to each other akin to the sliding-cube model. Reconfiguration is carried out while keeping the robot connected at all times. If executed in a synchronous way, any reconfiguration of a robotic system of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} modules is done in O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} time steps with O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} basic moves per module, using O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1)$$\end{document} force per module, O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(1)$$\end{document} size memory and computation per module (except for one module, which needs O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} size memory to store the information of the goal shape), and O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} communication per module.
引用
收藏
页码:383 / 413
页数:30
相关论文
共 50 条
  • [1] Distributed reconfiguration of 2D lattice-based modular robotic systems
    Hurtado, Ferran
    Molina, Enrique
    Ramaswami, Suneeta
    Sacristan, Vera
    [J]. AUTONOMOUS ROBOTS, 2015, 38 (04) : 383 - 413
  • [2] Efficient reconfiguration of lattice-based modular robots
    Aloupis, Greg
    Benbernou, Nadia
    Damian, Mirela
    Demaine, Erik D.
    Flatland, Robin
    Iacono, John
    Wuhrer, Stefanie
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (08): : 917 - 928
  • [3] A Distributed Self-Reconfiguration Algorithm for Cylindrical Lattice-Based Modular Robots
    Naz, Andre
    Piranda, Benoit
    Bourgeois, Julien
    Goldstein, Seth Copen
    [J]. 15TH IEEE INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (IEEE NCA 2016), 2016, : 254 - 263
  • [4] A Distributed Algorithm for Reconfiguration of Lattice-based Modular Self-Reconfigurable Robots
    Piranda, Benoit
    Bourgeois, Julien
    [J]. 2016 24TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP), 2016, : 1 - 9
  • [5] Distributed Shape Recognition Algorithm for Lattice-Based Modular Robots
    Bassil, Jad
    Yaacoub, Jean-Paul A.
    Piranda, Benoit
    Makhoul, Abdallah
    Bourgeois, Julien
    [J]. 2023 INTERNATIONAL SYMPOSIUM ON MULTI-ROBOT AND MULTI-AGENT SYSTEMS, MRS, 2023, : 85 - 91
  • [6] Multilevel lattice-based authorization in distributed supervisory and control systems
    Pejas, J
    [J]. ADVANCED COMPUTER SYSTEMS, PROCEEDINGS, 2002, 664 : 371 - 382
  • [7] An Efficient Lattice-based Distributed IBE
    Yin, Lu
    Zhang, Quan
    Li, Rui-Lin
    [J]. 3RD ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND APPLICATIONS (ITA 2016), 2016, 7
  • [8] Lattice-Based Robust Distributed Source Coding
    Elzouki, Dania
    Dumitrescu, Sorina
    Chen, Jun
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) : 1764 - 1781
  • [9] Recognition and Reconfiguration of Lattice-Based Cellular Structures by Simple Robots
    Niehs, Eike
    Schmidt, Arne
    Scheffer, Christian
    Biediger, Daniel E.
    Yannuzzi, Michael
    Jenett, Benjamin
    Abdel-Rahman, Amira
    Cheung, Kenneth C.
    Becker, Aaron T.
    Fekete, Sandor P.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 8252 - 8259
  • [10] Distributed Prediction of Unsafe Reconfiguration Scenarios of Modular Robotic Programmable Matter
    Piranda, Benoit
    Chodkiewicz, Pawel
    Holobut, Pawel
    Bordas, Stephane
    Bourgeois, Julien
    Lengiewicz, Jakub
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) : 2226 - 2233