Muckenhoupt-Type Conditions on Weighted Morrey Spaces

被引:0
|
作者
Javier Duoandikoetxea
Marcel Rosenthal
机构
[1] Universidad del País Vasco/Euskal Herriko Unibertsitatea,Departamento de Matemáticas
关键词
Morrey spaces; Muckenhoupt weights; Hardy–Littlewood maximal operator; Calderón operator; Extrapolation; 42B25; 42B35; 46E30; 42B20;
D O I
暂无
中图分类号
学科分类号
摘要
We define a Muckenhoup-type condition on weighted Morrey spaces using the Köthe dual of the space. We show that the condition is necessary and sufficient for the boundedness of the maximal operator defined with balls centered at the origin on weighted Morrey spaces. A modified condition characterizes the weighted inequalities for the Calderón operator. We also show that the Muckenhoup-type condition is necessary and sufficient for the boundedness on weighted local Morrey spaces of the usual Hardy–Littlewood maximal operator, simplifying the previous characterization of Nakamura–Sawano–Tanaka. For the same operator, in the case of global Morrey spaces the condition is necessary and for the sufficiency we add a local Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p$$\end{document} condition. We can extrapolate from Lebesgue Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p$$\end{document}-weighted inequalities to weighted global and local Morrey spaces in a very general setting, with applications to many operators.
引用
收藏
相关论文
共 50 条