Lightweight deep learning model for automatic landslide prediction and localization

被引:0
|
作者
Payal Varangaonkar
S. V. Rode
机构
[1] Sipna College of Engineering and Technology,Electronics and Telecommunication Department
[2] Sipna College of Engineering & Technology,undefined
来源
关键词
Computer vision methods; Convolutional neural network; Deep learning; LSTM; Landslide detection; Landslide localization; Segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
There has been a lot of interest in utilizing remote sensing images to anticipate landslides. We propose a novel framework for automatic landslide detection and landslide region localization from the input remote sensing image. The framework consists of pre-processing, dynamic segmentation, automatic feature extraction, classification, and localization. The pre-processing is the integrated step that performs atmospheric corrections, geometric corrections, and unnecessary region removal with denoising using 2D median filtering. The pre-processed image is then segmented using the dynamic segmentation approach to extract the Region of Interest (ROI). We propose lightweight Convolutional Neural Network (CNN) layers for automatic feature extraction and scaling using the ResNet50 model. The CNN layers are designed systematically for automatic feature extraction to improve accuracy and reduce computational requirements. The Long-Term Short Memory (LSTM), Artificial Neural Network (ANN), and Support Vector Machine (SVM) classifiers are designed to perform the landslide prediction. If landslides are forecast, the post-processing stages are intended to identify potential landslide locations. The experimental results show that the proposed CNN-LSTM model outperformed the existing solutions in terms of accuracy, F1 score, precision, and recall rates. The experimental outcomes reveal that the proposed model improves the overall prediction accuracy by 2% and reduces the computational complexity by 35% compared to state-of-the-art methods.
引用
收藏
页码:33245 / 33266
页数:21
相关论文
共 50 条
  • [1] Lightweight deep learning model for automatic landslide prediction and localization
    Varangaonkar, Payal
    Rode, S. V.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (21) : 33245 - 33266
  • [2] A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images
    Parmanand Sharma
    Takahiro Ninomiya
    Kazuko Omodaka
    Naoki Takahashi
    Takehiro Miya
    Noriko Himori
    Takayuki Okatani
    Toru Nakazawa
    Scientific Reports, 12
  • [3] A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images
    Sharma, Parmanand
    Ninomiya, Takahiro
    Omodaka, Kazuko
    Takahashi, Naoki
    Miya, Takehiro
    Himori, Noriko
    Okatani, Takayuki
    Nakazawa, Toru
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Lightweight Deep Learning Model for Automatic Modulation Classification in Cognitive Radio Networks
    Kim, Seung-Hwan
    Kim, Jae-Woo
    Doan, Van-Sang
    Kim, Dong-Seong
    IEEE ACCESS, 2020, 8 : 197532 - 197541
  • [5] Automatic recognition and classification of field insects based on lightweight deep learning model
    Yuan Z.-M.
    Yuan H.-J.
    Yan Y.-X.
    Li Q.
    Liu S.-Q.
    Tan S.-Q.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2021, 51 (03): : 1131 - 1139
  • [6] Landslide Displacement Prediction Based on a Deep Learning Model Considering the Attention Mechanism
    Guo Z.
    Yang Y.
    He J.
    Huang D.
    Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geosciences, 2024, 49 (05): : 1665 - 1678
  • [7] A spatially explicit deep learning neural network model for the prediction of landslide susceptibility
    Dong Van Dao
    Jaafari, Abolfazl
    Bayat, Mahmoud
    Mafi-Gholami, Davood
    Qi, Chongchong
    Moayedi, Hossein
    Tran Van Phong
    Hai-Bang Ly
    Tien-Thinh Le
    Phan Trong Trinh
    Chinh Luu
    Nguyen Kim Quoc
    Bui Nhi Thanh
    Binh Thai Pham
    CATENA, 2020, 188
  • [8] Tool Wear Prediction with External Signals Based on Lightweight Deep Learning Model
    Zheng, Liyang
    Jiang, Yuan
    Zhang, Yu
    Guo, Jincheng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5311 - 5315
  • [9] Automatic Face Detection of Farm Images Based on an Enhanced Lightweight Deep Learning Model
    Huang, Xiaoping
    Huang, Fei
    Hu, Jiahui
    Zheng, Huanyu
    Liu, Mengyi
    Dou, Zihao
    Jiang, Qing
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (12)
  • [10] Lightweight Deep Learning with Model Compression
    Kang, U.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT III, 2021, 12683 : 662 - 663