Bacillus megaterium strainB153-2-2 is a potential bacterial biocontrol agentagainst Rhizoctonia solani isolate 2B12(ISG-2B). To study the role of antagonism (Ant),chemotaxis (Che), motility (Mot), and sporulation(Spo) of the biocontrol agent during seed and rootcolonization and the correlation between rootcolonization and the suppression of soybean (Glycine max) root rot caused by R. solani,strain B153-2-2(Che+Mot+Ant++Spo++) and the sevenderived mutants with altered antagonism, chemotaxis,motility, and/or sporulation were used. The bacterialcells were introduced into soil separately either asa soybean seed coating or soil application. Two soilmixtures defined as coarse and fine soil were used. The bacterial cell chemotactic response to soybeanroot and seed exudates and antagonism to R.solani were significantly (p = 0.05) correlatedwith root and seed colonization in some but not alltreatments. The sporulation-defective mutants had lowcell populations immediately after application and,therefore, reduced root colonization. The differencesin root colonization diminished among the mutants andstrain B153-2-2 when R. solani was present inthe soil or, as seedlings grew older. Soybean seedlingroots grown in coarse soil had significantly greatercolonization by B153-2-2 or its mutants and a lowerdisease index than that in fine soil. There was asignificant positive correlation (r2 = 0.78)between root colonization by strain B153-2-2 or itsmutants and suppression of Rhizoctonia root rot.