A novel effective approach for systems of coupled Schrödinger equation

被引:0
|
作者
H AMINIKHAH
F POURNASIRI
F MEHRDOUST
机构
[1] University of Guilan,Department of Applied Mathematics, School of Mathematical Sciences
来源
Pramana | 2016年 / 86卷
关键词
Partial differential equation; systems of coupled Schrödinger equation; new homotopy perturbation method; 02.70.Wz; 02.30.Jr; 03.65.−w;
D O I
暂无
中图分类号
学科分类号
摘要
Schrödinger equations arise in modelling various physical and engineering problems. In this paper, we introduce a new homotopy perturbation method (NHPM) to improve the accuracy and computational efficiency of the homotopy perturbation method (HPM). We show that this technique enables one to determine the exact solution of the system of Schrödinger equations. Several illustrative examples are given to demonstrate the effectiveness of this method.
引用
收藏
页码:19 / 30
页数:11
相关论文
共 50 条
  • [1] A New Approach to the Exact Solutions of the Effective Mass Schrödinger Equation
    Cevdet Tezcan
    Ramazan Sever
    Özlem Yeşiltaş
    International Journal of Theoretical Physics, 2008, 47 : 1713 - 1721
  • [2] A novel effective approach for systems of coupled Schrodinger equation
    Aminikhah, H.
    Pournasiri, F.
    Mehrdoust, F.
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (01): : 19 - 30
  • [3] Effective Approximation for the Semiclassical Schrödinger Equation
    Philipp Bader
    Arieh Iserles
    Karolina Kropielnicka
    Pranav Singh
    Foundations of Computational Mathematics, 2014, 14 : 689 - 720
  • [4] On coupled nonlinear Schrödinger systems
    T. Saanouni
    Arabian Journal of Mathematics, 2019, 8 : 133 - 151
  • [5] A view of optical soliton solution of the coupled Schrödinger equation with a different approach
    Ozkan, Ayten
    Ozdemir, Nagehan
    Ozkan, Erdogan Mehmet
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [6] Quadratic-Argument Approach to Nonlinear Schrödinger Equation and Coupled Ones
    Xiaoping Xu
    Acta Applicandae Mathematicae, 2010, 110 : 749 - 769
  • [7] Scattering of solitons for the Schrödinger equation coupled to a particle
    A. Komech
    E. Kopylova
    Russian Journal of Mathematical Physics, 2006, 13 : 158 - 187
  • [8] Concentration of coupled cubic nonlinear Schrödinger equation
    Xiao-guang Li
    Jian Zhang
    Applied Mathematics and Mechanics, 2005, 26 : 1357 - 1362
  • [9] Homogenization of the Schrödinger Equation and Effective Mass Theorems
    Grégoire Allaire
    Andrey Piatnitski
    Communications in Mathematical Physics, 2005, 258 : 1 - 22
  • [10] Localized waves in a general coupled nonlinear Schrödinger equation
    Serge Paulin T. Mukam
    Victor K. Kuetche
    Thomas B. Bouetou
    The European Physical Journal Plus, 132