Strong Spatial Mixing for Repulsive Point Processes

被引:0
|
作者
Marcus Michelen
Will Perkins
机构
[1] University of Illinois at Chicago,Department of Mathematics, Statistics, and Computer Science
来源
关键词
Gibbs point process; Classical gas; Strong spatial mixing; Approximate counting; Sampling; Markov chains; Pressure; Surface pressure;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a Gibbs point process interacting via a finite-range, repulsive potential ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} exhibits a strong spatial mixing property for activities λ<e/Δϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda < e/\Delta _{\phi }$$\end{document}, where Δϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\phi }$$\end{document} is the potential-weighted connective constant of ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, defined recently in Michelen and Perkins (http://arxiv.org/abs/2008.00972, 2020). Using this we derive several analytic and algorithmic consequences when λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} satisfies this bound: We prove new identities for the infinite volume pressure and surface pressure of such a process (and in the case of the surface pressure establish its existence).We prove that local block dynamics for sampling from the model on a box of volume N in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} mixes in time O(NlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N \log N)$$\end{document}, giving efficient randomized algorithms to approximate the partition function and approximately sample from these models.We use the above identities and algorithms to give efficient approximation algorithms for the pressure and surface pressure.
引用
收藏
相关论文
共 50 条