The Dirac Operator on SUq(2)

被引:0
|
作者
Ludwik Dabrowski
Giovanni Landi
Andrzej Sitarz
Walter van Suijlekom
Joseph C. Várilly
机构
[1] Scuola Internazionale Superiore di Studi Avanzati,Dipartimento di Matematica e Informatica
[2] Università di Trieste,INFN
[3] Sezione di Napoli,Institute of Physics
[4] Jagiellonian University,Departamento de Matemática
[5] Universidad de Costa Rica,undefined
来源
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Quantum Computing;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a 3+-summable spectral triple [inline-graphic not available: see fulltext] over the quantum group SUq(2) which is equivariant with respect to a left and a right action of [inline-graphic not available: see fulltext] The geometry is isospectral to the classical case since the spectrum of the operator D is the same as that of the usual Dirac operator on the 3-dimensional round sphere. The presence of an equivariant real structure J demands a modification in the axiomatic framework of spectral geometry, whereby the commutant and first-order properties need be satisfied only modulo infinitesimals of arbitrary high order.
引用
收藏
页码:729 / 759
页数:30
相关论文
共 50 条