Generalized Hölder Spaces of Holomorphic Functions in Domains in the Complex Plane

被引:0
|
作者
Alexey Karapetyants
Stefan Samko
机构
[1] State University of New York,
[2] Southern Federal University,undefined
[3] University of Algarve,undefined
来源
关键词
Hölder spaces; holomorphic functions; variable exponent spaces; modulus of continuity; 30H20; 46E30; 46E15;
D O I
暂无
中图分类号
学科分类号
摘要
We study some nonstandard spaces of functions holomorphic in domains on the complex plain with certain smoothness conditions up to the boundary. The first type is the space of Hölder-type holomorphic functions with prescribed modulus of continuity ω=ω(h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega =\omega (h)$$\end{document}, and the second is the variable exponent holomorphic Hölder space with the modulus of continuity |h|λ(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|h|^{\lambda (z)}$$\end{document}. We give a characterization of functions in these spaces in terms of the behavior of their derivatives near the boundary.
引用
收藏
相关论文
共 50 条