Entanglement Entropy of Black Holes

被引:0
|
作者
Sergey N. Solodukhin
机构
[1] Université François-Rabelais Tours Fédération Denis Poisson - CNRS,Laboratoire de Mathématiques et Physique Théorique
来源
关键词
Entanglement Entropy; Black Hole; Bekenstein-Hawking Entropy; Euclidean Path Integral; Heat Kernel;
D O I
暂无
中图分类号
学科分类号
摘要
The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.
引用
收藏
相关论文
共 50 条
  • [1] Entanglement Entropy of Black Holes
    Solodukhin, Sergey N.
    [J]. LIVING REVIEWS IN RELATIVITY, 2011, 14
  • [2] Entanglement entropy, black holes and holography
    Buniy, Roman V.
    Hsu, Stephen D. H.
    [J]. PHYSICS LETTERS B, 2007, 644 (01) : 72 - 76
  • [3] Finite entanglement entropy of black holes
    Giaccari, Stefano
    Modesto, Leonardo
    Rachwal, Leslaw
    Zhu, Yiwei
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (06):
  • [4] Finite entanglement entropy of black holes
    Stefano Giaccari
    Leonardo Modesto
    Lesław Rachwał
    Yiwei Zhu
    [J]. The European Physical Journal C, 2018, 78
  • [5] Entanglement Entropy of AdS Black Holes
    Cadoni, Mariano
    Melis, Maurizio
    [J]. ENTROPY, 2010, 12 (11) : 2244 - 2267
  • [6] On holographic entanglement entropy of Horndeski black holes
    Elena Caceres
    Ravi Mohan
    Phuc H. Nguyen
    [J]. Journal of High Energy Physics, 2017
  • [7] Entanglement entropy of extremal BTZ black holes
    Caputa, Pawel
    Jejjala, Vishnu
    Soltanpanahi, Hesam
    [J]. PHYSICAL REVIEW D, 2014, 89 (04):
  • [8] Entanglement entropy of subtracted geometry black holes
    Mirjam Cvetič
    Zain H. Saleem
    Alejandro Satz
    [J]. Journal of High Energy Physics, 2014
  • [9] Entanglement entropy of subtracted geometry black holes
    Cvetic, Mirjam
    Saleem, Zain H.
    Satz, Alejandro
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):
  • [10] On holographic entanglement entropy of Horndeski black holes
    Caceres, Elena
    Mohan, Ravi
    Nguyen, Phuc H.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10):