On a Linear Group Pursuit Problem with Fractional Derivatives

被引:0
|
作者
A. I. Machtakova
N. N. Petrov
机构
[1] Udmurt State University,
[2] Krasovskii Institute of Mathematics and Mechanics,undefined
[3] Ural Branch of the Russian Academy of Sciences,undefined
关键词
differential game; group pursuit; pursuer; evader; fractional derivative;
D O I
暂无
中图分类号
学科分类号
摘要
A problem of pursuit of one evader by a group of pursuers is considered in a finite-dimensional Euclidean space. The dynamics is described by the system superscript𝐷subscript𝛼𝑖subscript𝑧𝑖subscript𝐴𝑖subscript𝑧𝑖subscript𝐵𝑖subscript𝑢𝑖subscript𝐶𝑖𝑣\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{(\alpha_{i})}z_{i}=A_{i}z_{i}+B_{i}u_{i}-C_{i}v,$$\end{document}subscript𝑢𝑖subscript𝑈𝑖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{i}\in U_{i},$$\end{document}𝑣𝑉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V,$$\end{document} where superscript𝐷𝛼𝑓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{(\alpha)}f$$\end{document} is the Caputo derivative of order 𝛼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} of a function 𝑓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document}. The sets of admissible controls of the players are convex and compact. The terminal set consists of cylindrical sets subscript𝑀𝑖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{i}$$\end{document} of the form subscript𝑀𝑖superscriptsubscript𝑀𝑖1superscriptsubscript𝑀𝑖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{i}=M_{i}^{1}+M_{i}^{2}$$\end{document}, where superscriptsubscript𝑀𝑖1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{i}^{1}$$\end{document} is a linear subspace of the phase space and superscriptsubscript𝑀𝑖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{i}^{2}$$\end{document} is a convex compact set from the orthogonal complement of superscriptsubscript𝑀𝑖1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{i}^{1}$$\end{document}. We propose two approaches to solving the problem, which ensure the termination of the game in a certain guaranteed time in the class of quasi-strategies. In the first approach, the pursuers construct their controls so that the terminal sets “cover” the evader’s uncertainty region. In the second approach, the pursuers construct their controls using resolving functions. The theoretical results are illustrated by model examples.
引用
收藏
页码:S175 / S187
相关论文
共 50 条