Fire judgment method based on intelligent optimization algorithm and evidence fusion

被引:0
|
作者
Dai Junfeng
Fu Li-hui
机构
[1] Huaiyin Institute of Technology,Faculty of Electronic Information Engineering
[2] Huaiyin Institute of Technology,Faculty of Automation
来源
关键词
Fire judgment; Swarm intelligence optimization; Evidence fusion theory; Inevitable error; Random error; 13C05; 28A99; 28A20;
D O I
暂无
中图分类号
学科分类号
摘要
To reduce the adverse effects of inevitable error and random error in the fire data obtained by multiple sensors, in this paper, we propose a fire judgment method that uses Swarm intelligence optimization techniques and Evidence fusion. First, three sensors (CO, smoke and temperature) are used to obtain fire data which are processed by the method of the interval number processing, and the distances between the fire data and the characteristic value of fire grade are calculated. The reliability coefficient Nk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{k}$$\end{document} is optimized by Swarm intelligence algorithms to complete the modification of the mass function. Then, the combination rule of interval evidence and the modified mass function are synthesized to obtain the comprehensive interval evidence. Finally, the fire grade is judged according to the decision rule. We study the usability of these techniques for fire judgment and compare the optimization performance of the important Swarm intelligence algorithms, including traditional Particle Swarm Optimization (PSO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{PSO}}$$\end{document}) and its improved algorithm (IPSO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IPSO}}$$\end{document}), the latest algorithms, Black Widow Optimization (BWO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{BWO}}$$\end{document}) and its improved algorithm (IBWO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IBWO}}$$\end{document}), Bald Eagle Search Algorithm (BES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{BES}}$$\end{document}) and its improved algorithm (IBES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IBES}}$$\end{document}). The experimental results show that the average probabilities of IBWO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IBWO}}$$\end{document}, IBES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IBES}}$$\end{document} and IPSO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IPSO}}$$\end{document} for obtaining the correct fire grades are 0.96, 0.88, and 0.86, respectively, the performance of three improved algorithms in fire judgment have been greatly increased, compared to traditional D - S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{D - S}}$$\end{document} evidence fusion method, the increase ratios of IBWO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IBWO}}$$\end{document}, IBES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IBES}}$$\end{document} and IPSO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{IPSO}}$$\end{document} are 43.3%, 31.3%, 28.4%. Therefore, the D - S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{D - S}}$$\end{document} evidence fusion method optimized by Swarm intelligence algorithms are better than that of traditional D - S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{D - S}}$$\end{document} evidence method for fire detection, which provides a new idea for fire detection.
引用
收藏
相关论文
共 50 条
  • [1] Fire judgment method based on intelligent optimization algorithm and evidence fusion
    Junfeng, Dai
    Li-hui, Fu
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (05):
  • [2] Intelligent fire monitoring system based on the information fusion algorithm
    Li L.
    Liu H.
    Li S.
    [J]. Li, Shujing (shujingli@yahoo.com), 2016, American Scientific Publishers (14) : 1094 - 1098
  • [3] An evidence fusion method based on weight optimization
    Li, Kun
    Han, Ying
    [J]. PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 5089 - 5093
  • [4] Optimization method of machining parameters based on intelligent algorithm
    Cai, Jie
    Zhang, Wei
    Deng, Jinlian
    Zhao, Weisheng
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2022, 40 (04) : 737 - 752
  • [5] Optimization method of machining parameters based on intelligent algorithm
    Jie Cai
    Wei Zhang
    Jinlian Deng
    Weisheng Zhao
    [J]. Distributed and Parallel Databases, 2022, 40 : 737 - 752
  • [6] Sensor Fusion Based Seek-and-Find Fire Algorithm for Intelligent Firefighting Robot
    Kim, Jong-Hwan
    Keller, Brian
    Lattimer, Brian Y.
    [J]. 2013 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM): MECHATRONICS FOR HUMAN WELLBEING, 2013, : 1482 - 1486
  • [7] Research on Optimization Path of Intelligent Pension Industry Based on Intelligent Fusion Algorithm of Multisource Information
    Hao, Gang
    Sun, Qing
    Han, Ping
    [J]. Scientific Programming, 2021, 2021
  • [8] Research on Optimization Path of Intelligent Pension Industry Based on Intelligent Fusion Algorithm of Multisource Information
    Hao, Gang
    Sun, Qing
    Han, Ping
    [J]. SCIENTIFIC PROGRAMMING, 2021, 2021
  • [9] Intelligent fusion method of infrared polarization image based on fireworks algorithm
    Chen Wei
    Sun Xiao-Bing
    Qiao Yan-Li
    Chen Fei-Nan
    Yin Yu-Long
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2020, 39 (04) : 523 - 532
  • [10] Intelligent Wavelet Based Pre-Filtering Method for Ultrasonic Sensor Fusion Inverse Algorithm Performance Optimization
    Kovacs, Gyorgy
    Nagy, Szilvia
    [J]. INVENTIONS, 2021, 6 (02)