p-adic étale cohomology of period domains

被引:0
|
作者
Pierre Colmez
Gabriel Dospinescu
Julien Hauseux
Wiesława Nizioł
机构
[1] CNRS,
[2] IMJ-PRG,undefined
[3] Sorbonne Université,undefined
[4] CNRS,undefined
[5] UMPA,undefined
[6] École Normale Supérieure de Lyon,undefined
[7] Université de Lille,undefined
[8] CNRS,undefined
[9] UMR 8524-Laboratoire Paul Painlevé,undefined
来源
Mathematische Annalen | 2021年 / 381卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We compute the p-torsion and p-adic étale cohomologies with compact support of period domains over local fields in the case of basic isocrystals for quasi-split reductive groups. As in the cases of ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-torsion or ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-adic coefficients, ℓ≠p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ne p$$\end{document}, considered by Orlik, the results involve generalized Steinberg representations. For the p-torsion case, we follow the method used by Orlik in his computations of the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-torsion étale cohomology using as a key new ingredient the computation of Ext\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ext}} $$\end{document} groups between mod p generalized Steinberg representations of p-adic groups. For the p-adic case, we do not use Huber’s definition of étale cohomology with compact support as Orlik did since it seems to give spaces that are much too big; instead we use continuous étale cohomology with compact support.
引用
收藏
页码:105 / 180
页数:75
相关论文
共 50 条
  • [1] p-adic etale cohomology of period domains
    Colmez, Pierre
    Dospinescu, Gabriel
    Hauseux, Julien
    Niziol, Wieslawa
    MATHEMATISCHE ANNALEN, 2021, 381 (1-2) : 105 - 180
  • [2] Coverings of p-adic period domains
    Faltings, Gerd
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 643 : 111 - 139
  • [3] p-adic Cohomology
    Kedlaya, Kiran S.
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS: ALGEBRAIC GEOMETRY SEATTLE 2005, VOL 80, PTS 1 AND 2, 2009, 80 : 667 - 684
  • [4] On the structure of some p-adic period domains
    Chen, Miaofen
    Fargues, Laurent
    Shen, Xu
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2021, 9 (01) : 213 - 267
  • [5] p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case
    Takeshi Tsuji
    Inventiones mathematicae, 1999, 137 : 233 - 411
  • [6] P-ADIC ETALE COHOMOLOGY
    BLOCH, S
    KATO, K
    PUBLICATIONS MATHEMATIQUES, 1986, (63): : 107 - 152
  • [7] Syntomic cohomology and p-adic motivic cohomology
    Ertl, Veronika
    Niziol, Wieslawa
    ALGEBRAIC GEOMETRY, 2019, 6 (01): : 100 - 131
  • [8] SYNTOMIC COHOMOLOGY AND P-ADIC ETALE COHOMOLOGY
    KATO, K
    MESSING, W
    TOHOKU MATHEMATICAL JOURNAL, 1992, 44 (01) : 1 - 9
  • [9] P-ADIC CURVATURE AND COHOMOLOGY OF DISCRETE SUBGROUPS OF P-ADIC GROUPS
    GARLAND, H
    ANNALS OF MATHEMATICS, 1973, 97 (03) : 375 - 423
  • [10] Residues on buildings and de Rham cohomology of p-adic symmetric domains
    De Shalit, E
    DUKE MATHEMATICAL JOURNAL, 2001, 106 (01) : 123 - 191