The existence of affine-periodic solutions for nonlinear impulsive differential equations

被引:0
|
作者
Shuai Wang
机构
[1] Changchun University of Science and Technology,School of Science
来源
关键词
Nonlinear impulsive differential equations; Affine-periodic solutions; Boundary value problem; Topological degree;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of affine-periodic solutions of nonlinear impulsive differential equations. The affine-periodic solutions have the form x(t+T)=Qx(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(t+T)=Qx(t)$\end{document} with some nonsingular matrix Q. We give a theorem on the existence of the affine-periodic solutions, respectively, depending on wether det(I−Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{det}(I-Q)$\end{document} (I= identity matrix) is equal to 0 or not.
引用
收藏
相关论文
共 50 条
  • [1] The existence of affine-periodic solutions for nonlinear impulsive differential equations
    Wang, Shuai
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [2] AFFINE-PERIODIC SOLUTIONS FOR NONLINEAR DIFFERENTIAL EQUATIONS
    Wang, Chuanbiao
    Yang, Xue
    Li, Yong
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (05) : 1717 - 1737
  • [3] Affine-Periodic Solutions for Impulsive Differential Systems
    Chuanbiao Wang
    Xue Yang
    Xusheng Chen
    [J]. Qualitative Theory of Dynamical Systems, 2020, 19
  • [4] Affine-Periodic Solutions for Impulsive Differential Systems
    Wang, Chuanbiao
    Yang, Xue
    Chen, Xusheng
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [5] Existence of Affine-Periodic Solutions to Newton Affine-Periodic Systems
    Fei Xu
    Xue Yang
    Yong Li
    Moxin Liu
    [J]. Journal of Dynamical and Control Systems, 2019, 25 : 437 - 455
  • [6] Existence of Affine-Periodic Solutions to Newton Affine-Periodic Systems
    Xu, Fei
    Yang, Xue
    Li, Yong
    Liu, Moxin
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (03) : 437 - 455
  • [7] AFFINE-PERIODIC SOLUTIONS AND PSEUDO AFFINE-PERIODIC SOLUTIONS FOR DIFFERENTIAL EQUATIONS WITH EXPONENTIAL DICHOTOMY AND EXPONENTIAL TRICHOTOMY
    Cheng, Cheng
    Huang, Fushan
    Li, Yong
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 950 - 967
  • [8] Affine-periodic solutions for higher order differential equations
    Xu, Fei
    Yang, Xue
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 105
  • [9] Affine-periodic solutions for nonlinear dynamic equations on time scales
    Wang, Chuanbiao
    Li, Yong
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [10] Affine-periodic solutions for nonlinear dynamic equations on time scales
    Chuanbiao Wang
    Yong Li
    [J]. Advances in Difference Equations, 2015