The global well-posedness for the 3-D compressible micropolar system in the critical Besov space

被引:0
|
作者
Zihao Song
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
关键词
Critical Besov space; Compressible micropolar system; Well-posedness; 35A01; 42B25; 35Q30;
D O I
暂无
中图分类号
学科分类号
摘要
We are concerned with 3-D compressible micropolar fluid system in the critical Besov space. We will focus on the global well-posedness, which is based on the results for the incompressible case given by Chen and Miao (J Differ Equ 252:2698–2724, 2012). To deal with the linear system which is a couple system with (a,u,ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a,u,\omega )$$\end{document}, inspired by Wu and Wang (J Differ Equ 265:2544–2576, 2018), we find the linear system for the compressible micropolar equations could be decomposed into a compressible Navier–Stokes equation and an incompressible micropolar system. We underline that instead of establishing estimates similar to the heat equation for the angular velocity ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} in Chen and Miao (2012), we find ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is dominated by damping effect in the low frequency. By borrowing the idea from Haspot (Arch Ration Mech Anal 202:427–460, 2011) named the effective velocity, we are able to decouple the linear system for the incompressible part and reach a damping regularity in the low frequency which is necessary to close the uniform estimates for nonlinear terms.
引用
收藏
相关论文
共 50 条
  • [1] The global well-posedness for the 3-D compressible micropolar system in the critical Besov space
    Song, Zihao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):
  • [2] Global well-posedness for the micropolar fluid system in critical Besov spaces
    Chen, Qionglei
    Miao, Changxing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (03) : 2698 - 2724
  • [3] Well-posedness for the 3-D generalized micropolar system in critical Fourier-Besov-Morrey spaces
    Gao, Peng
    Yuan, Baoquan
    Zhai, Tiantian
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2025,
  • [4] Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) : 179 - 195
  • [5] WELL-POSEDNESS FOR THE 3-D GENERALIZED MICROPOLAR FLUID SYSTEM IN CRITICAL FOURIER-BESOV-MORREY SPACES
    Ouidirne F.
    Azanzal A.
    Allalou C.
    Oukessou M.
    Journal of Mathematical Sciences, 2023, 271 (4) : 482 - 496
  • [6] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES
    Zhai, Xiaoping
    Li, Yongsheng
    Yan, Wei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) : 1865 - 1884
  • [7] Sharp well-posedness and ill-posedness for the 3-D micropolar fluid system in Fourier-Besov spaces
    Zhu, Weipeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 : 335 - 351
  • [8] Well-posedness and stability of solutions for the 3-D generalized micropolar system in Fourier–Besov–Morrey spaces
    Halima Srhiri
    Fatima Ouidirne
    Chakir Allalou
    Khalid Hilal
    Journal of Elliptic and Parabolic Equations, 2023, 9 : 725 - 755
  • [9] Well-posedness and stability of solutions for the 3-D generalized micropolar system in Fourier-Besov-Morrey spaces
    Srhiri, Halima
    Ouidirne, Fatima
    Allalou, Chakir
    Hilal, Khalid
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (02) : 725 - 755
  • [10] Global Well-Posedness in Spatially Critical Besov Space for the Boltzmann Equation
    Duan, Renjun
    Liu, Shuangqian
    Xu, Jiang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) : 711 - 745