Mathematical modeling of distance constraints on two-dimensional ω-objects

被引:2
|
作者
Stoyan Yu.G. [1 ]
Pankratov A.V. [1 ]
Romanova T.E. [1 ]
机构
[1] A. N. Podgorny Institute for Mechanical Engineering Problems, National Academy of Sciences of Ukraine, Kharkov
关键词
Allowable distance; Geometric object; Mathematical modeling; ω-function;
D O I
10.1007/s10559-012-9412-0
中图分类号
学科分类号
摘要
This paper introduces the concept of radical-free pseudonormalized ω-functions, which allows one to describe constraints on minimum and maximum allowable distances between two-dimensional ω-objects. Translations and rotations of ω-objects in a two-dimensional Euclidean space are allowable. The theorem on the existence of a radical-free pseudonormalized ω-function for a pair of arbitrary-shaped ω-objects whose frontiers are formed by the union of line segments and circular arcs is formulated. An efficient algorithm is proposed to derive pseudonormalized ω-functions. © 2012 Springer Science+Business Media, Inc.
引用
收藏
页码:330 / 334
页数:4
相关论文
共 50 条
  • [1] Modeling distance uncertainties in two-dimensional space
    Mao, Zhengyuan
    Fan, Linna
    Dong, Pinliang
    [J]. MEASUREMENT, 2022, 202
  • [2] Two-Dimensional Mathematical Modeling of the Pack Carburizing Process
    S. Sarkar
    G.S. Gupta
    [J]. Metallurgical and Materials Transactions A, 2008, 39 : 2424 - 2434
  • [3] Two-dimensional mathematical modeling of fluidized bed drying
    Basirat-Tabrizi, H
    Saffar-Avval, M
    Assarie, MR
    [J]. ENERGY AND THE ENVIRONMENT, 1999, : 363 - 366
  • [4] Two-dimensional mathematical modeling of the pack carburizing process
    Sarkar, S.
    Gupta, G. S.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2008, 39A (10): : 2424 - 2434
  • [5] TWO-DIMENSIONAL MATHEMATICAL-MODELING OF DSS DATA INVERSION
    PAVLENKOVA, NI
    PSHENCHIK, I
    [J]. IZVESTIYA AKADEMII NAUK SSSR FIZIKA ZEMLI, 1982, (02): : 12 - 22
  • [6] Mathematical Modeling of the Magnetization of a Two-Dimensional System of Magnetic Moments
    Bystrov A.A.
    Akimov M.L.
    Polyakov O.P.
    Polyakov P.A.
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82 (8) : 965 - 967
  • [7] Mathematical Modeling of Two-dimensional Unsteady Flow in Growing Tumor
    Gracia, A.
    Riahi, D. N.
    Roy, R.
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2015, 10 (01): : 230 - 248
  • [8] Two-dimensional mathematical modeling of interaction of a shock wave with moving cylinders
    Sidorenko, D. A.
    Utkin, P. S.
    [J]. XXXIII INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER, 2019, 1147
  • [9] Two-Dimensional Mathematical Modeling of the Oxidative Coupling of Methane in a Membrane Reactor
    Wiyaratn, Wisitsree
    Manundawee, Salamah
    Arpornwichanop, Amornchai
    Assabumrungrat, Suttichai
    Watanapa, Anucha
    Worawimut, Chidporn
    [J]. ENGINEERING JOURNAL-THAILAND, 2016, 20 (01): : 17 - 33
  • [10] Sparsest packing of two-dimensional objects
    Romanova, Tatiana
    Pankratov, Alexander
    Litvinchev, Igor
    Plankovskyy, Sergiy
    Tsegelnyk, Yevgen
    Shypul, Olga
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (13) : 3900 - 3915