MONOMIAL BASES AND BRANCHING RULES

被引:0
|
作者
ALEXANDER MOLEV
OKSANA YAKIMOVA
机构
[1] University of Sydney,School of Mathematics and Statistics
[2] Mathem. Institut,Universität zu Köln
[3] Friedrich-Schiller-Universität Jena,Institut für Mathematik
来源
Transformation Groups | 2021年 / 26卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Following a question of Vinberg, a general method to construct monomial bases for finite-dimensional irreducible representations of a reductive Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{g} $$\end{document} was developed in a series of papers by Feigin, Fourier, and Littelmann. Relying on this method, we construct monomial bases of multiplicity spaces associated with the restriction of the representation to a reductive subalgebra g0⊂g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathfrak{g}}_0\subset \mathfrak{g} $$\end{document}. As an application, we produce new monomial bases for representations of the symplectic Lie algebra associated with a natural chain of subalgebras. One of our bases is related via a triangular transition matrix to a suitably modified version of the basis constructed earlier by the first author. In type A, our approach shows that the Gelfand–Tsetlin basis and the canonical basis of Lusztig have a common PBW-parameterisation. This implies that the transition matrix between them is triangular. We show also that a similar relationship holds for the Gelfand–Tsetlin and the Littelmann bases in type A.
引用
收藏
页码:995 / 1024
页数:29
相关论文
共 50 条
  • [1] MONOMIAL BASES AND BRANCHING RULES
    Molev, Alexander
    Yakimova, Oksana
    TRANSFORMATION GROUPS, 2021, 26 (03) : 995 - 1024
  • [2] Grobner bases and standard monomial bases
    Gonciulea, N
    Lakshmibai, V
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (03): : 255 - 260
  • [3] Mixed monomial bases
    Pedersen, P
    Sturmfels, B
    ALGORITHMS IN ALGEBRAIC GEOMETRY AND APPLICATIONS, 1996, 143 : 307 - 316
  • [4] Subresultants and generic monomial bases
    D'Andrea, C
    Jeronimo, G
    JOURNAL OF SYMBOLIC COMPUTATION, 2005, 39 (3-4) : 259 - 277
  • [5] MONOMIAL BASES IN THE STEENROD ALGEBRA
    ARNON, D
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 96 (03) : 215 - 223
  • [6] Construction of Janet bases - I. Monomial bases
    Gerdt, VP
    Blinkov, YA
    Yanovich, DA
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, 2001, : 233 - 247
  • [7] Monomial bases related to the n! conjecture
    Aval, JC
    DISCRETE MATHEMATICS, 2000, 224 (1-3) : 15 - 35
  • [8] Monomial bases for broken circuit complexes
    Brown, Jason I.
    Sagan, Bruce E.
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (08) : 1786 - 1800
  • [9] Monomial bases for quantum affine sIn
    Deng, BM
    Jie, D
    ADVANCES IN MATHEMATICS, 2005, 191 (02) : 276 - 304
  • [10] Crystals and monomial bases for Demazure modules
    Premat, A
    JOURNAL OF ALGEBRA, 2006, 298 (02) : 524 - 539