A comparative study of different machine learning methods on microarray gene expression data

被引:0
|
作者
Mehdi Pirooznia
Jack Y Yang
Mary Qu Yang
Youping Deng
机构
[1] University of Southern Mississippi,Department of Biological Sciences
[2] Harvard University,Harvard Medical School
[3] National Human Genome Research Institute,U.S. Department of Health and Human Services Bethesda
[4] National Institutes of Health (NIH),undefined
来源
关键词
Support Vector Machine; Feature Selection; Radial Basis Function; Expectation Maximization; Support Vector Machine Classifier;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A comparative study of different machine learning methods on microarray gene expression data
    Pirooznia, Mehdi
    Yang, Jack Y.
    Yang, Mary Qu
    Deng, Youping
    [J]. BMC GENOMICS, 2008, 9 (Suppl 1)
  • [2] A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
    Tabares-Soto, Reinel
    Orozco-Arias, Simon
    Romero-Cano, Victor
    Segovia Bucheli, Vanesa
    Luis Rodriguez-Sotelo, Jose
    Felipe Jimenez-Varon, Cristian
    [J]. PEERJ COMPUTER SCIENCE, 2020, PeerJ Inc. (2020)
  • [3] A Comparative Study of Different Machine Learning Algorithms on Gene Expression Profile Classification
    Chen, Tao
    Hu, Shengli
    Cui, Man
    Cao, Yang
    Quan, Shuangyan
    Wei, Jun
    Yang, Xiao
    [J]. 2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE AND INTERNET TECHNOLOGY, CII 2017, 2017, : 200 - 204
  • [4] Clustering methods for microarray gene expression data
    Belacel, Nabil
    Wang, Qian
    Cuperlovic-Culf, Miroslava
    [J]. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (04) : 507 - 531
  • [5] Machine Learning In Bioinformatics: Gene Expression And Microarray Studies
    Bagiroz, Beyza
    Doruk, Emre
    Yildiz, Oktay
    [J]. 2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [6] A comparative study of nonlinear manifold learning methods for cancer microarray data classification
    Orsenigo, Carlotta
    Vercellis, Carlo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (06) : 2189 - 2197
  • [7] A Comparative Study of Gene Selection Methods for Cancer Classification Using Microarray Data
    Babu, Manish
    Sarkar, Kamal
    [J]. 2016 SECOND IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2016, : 204 - 211
  • [8] Gene expression (microarray) data analysis by chemometric methods
    Zhu, David X.
    Goeke, Richard J.
    Baker, David L.
    Hamburg, James H.
    Booth, David E.
    Booth, Stephane E.
    [J]. CURRENT ANALYTICAL CHEMISTRY, 2007, 3 (03) : 233 - 237
  • [9] A comparative study of three different gene expression analysis methods
    Choe, Jae Young
    Han, Hyung Soo
    Lee, Seon Duk
    Lee, Hanna
    Lee, Dong Eun
    Ahn, Jae Yun
    Ryoo, Hyun Wook
    Seo, Kang Suk
    Kim, Jong Kun
    [J]. TECHNOLOGY AND HEALTH CARE, 2017, 25 (06) : 1073 - 1080
  • [10] Feature selection methods in microarray gene expression data: a systematic mapping study
    Mahnaz Vahmiyan
    Mohammadtaghi Kheirabadi
    Ebrahim Akbari
    [J]. Neural Computing and Applications, 2022, 34 : 19675 - 19702