On existence of solutions for some classes of elliptic problems with supercritical exponential growth

被引:0
|
作者
Claudianor Oliveira Alves
Liejun Shen
机构
[1] Universidade Federal de Campina Grande,Unidade Acadêmica de Matemática
[2] Zhejiang Normal University,Department of Mathematics
来源
Mathematische Zeitschrift | 2024年 / 306卷
关键词
Supercritical exponential growth; Trudinger–Moser inequality; Nonlinear Schrödinger equation; Strongly definite problem; Variational methods; 35A15; 35J10; 35B09; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we study the existence of solutions for the following classes of elliptic problems [graphic not available: see fulltext] where Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^2$$\end{document} is a smooth bounded domain and [graphic not available: see fulltext] where V∈C0(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in C^0(\mathbb {R}^2)$$\end{document} is periodic in Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^2$$\end{document} with 0∉σ(-Δ+V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\not \in \sigma (-\Delta +V)$$\end{document}. In the both problems above, f is a continuous function of the form f(t)=h(t)eα0|t|τ,t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(t)=h(t)e^{\alpha _0 |t|^\tau }, \quad t \in \mathbb {R}\end{aligned}$$\end{document}for some α0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0>0$$\end{document} and τ≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \ge 2$$\end{document} and h satisfying some technical conditions. By using variational methods, we show that problems (P) and (PV)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_V)$$\end{document} have a nontrivial solution for different types of α0>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _0>0$$\end{document} and τ≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \ge 2$$\end{document}.
引用
收藏
相关论文
共 50 条