Birational classification of pointless del Pezzo surfaces of degree 8

被引:0
|
作者
Andrey Trepalin
机构
[1] Steklov Mathematical Institute of Russian Academy of Sciences,Laboratory of Algebraic Geometry
[2] National Research University Higher School of Economics,undefined
来源
关键词
Del Pezzo surfaces; Quadric surfaces; Brauer group; Sarkisov links; 14E05; 14F22; 14G27; 14J45;
D O I
暂无
中图分类号
学科分类号
摘要
Let k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Bbbk $$\end{document} be a perfect field. Recently Jean-Louis Colliot-Thélène showed that two pointless quadric surfaces over k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Bbbk $$\end{document} are birationally equivalent if and only if they are isomorphic. We show that this result holds for arbitrary del Pezzo surfaces of degree 8 with the Picard number 1, and describe minimal surfaces birationally equivalent to a given pointless del Pezzo surface of degree 8.
引用
收藏
相关论文
共 50 条