On the area swept under the occupation process of an M/M/1 queue in a busy period

被引:0
|
作者
Fabrice Guillemin
Didier Pinchon
机构
[1] France Télécom/CNET,Laboratoire MIP
[2] DAC/ARP,undefined
[3] Université Paul Sabatier,undefined
来源
Queueing Systems | 1998年 / 29卷
关键词
queue; continued fractions; Bessel functions; asymptotic expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We compute in this paper the distribution of the area \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} swept under the occupation process of an M/M/1 queue during a busy period. For this purpose, we use the expression of the Laplace transform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{A}^ \star }$$ \end{document} of the random variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} established in earlier studies as a fraction of Bessel functions. To get information on the poles and the residues of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{A}^ \star }$$ \end{document}, we take benefit of the fact that this function can be represented by a continued fraction. We then show that this continued fraction is the even part of an S fraction and we identify its successive denominators by means of Lommel polynomials. This allows us to numerically evaluate the poles and the residues. Numerical evidence shows that the poles are very close to the numbers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sigma _n = - \left( {1 + \rho } \right)/n$$ \end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n \to \infty$$ \end{document}. This motivated us to formulate some conjectures, which lead to the derivation of the asymptotic behaviour of the poles and the residues. This is finally used to derive the asymptotic behaviour of the probability survivor function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$P\left\{{\mathcal{A}>x}\right\}$$ \end{document}. The outstanding property of the random variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{A}$$ \end{document} is that the poles accumulate at 0 and its tail does not exhibit a nice exponential decay but a decay of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$cx^{{{ - 1} \mathord{\left/ {\vphantom {{ - 1} 2}} \right. \kern-\nulldelimiterspace} 2}} {\text{e}}^{ - \gamma \sqrt x }$$ \end{document} for some positive constants c and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\gamma$$ \end{document}, which indicates that the random variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{A}}$$ \end{document} has a Weibull-like tail.
引用
收藏
页码:383 / 398
页数:15
相关论文
共 50 条
  • [1] On the area swept under the occupation process of an M/M/1 queue in a busy period
    Guillemin, F
    Pinchon, D
    [J]. QUEUEING SYSTEMS, 1998, 29 (2-4) : 383 - 398
  • [2] The busy period of an M/M/1 queue with balking and reneging
    Ammar, Sherif I.
    Helan, Mahmoud M.
    Al Amri, Faizah T.
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (22) : 9223 - 9229
  • [3] A new approach to the busy period of the M/M/1 queue
    Kimberly K.J. Kinateder
    Eui Yong Lee
    [J]. Queueing Systems, 2000, 35 : 105 - 115
  • [4] A new approach to the busy period of the M/M/1 queue
    Kinateder, KKJ
    Lee, EY
    [J]. QUEUEING SYSTEMS, 2000, 35 (1-4) : 105 - 115
  • [5] The Busy Period of the M/GI/∞ Queue
    D.J. Daley
    [J]. Queueing Systems, 2001, 38 : 195 - 204
  • [6] The busy period of the M/GI/∞ queue
    Daley, DJ
    [J]. QUEUEING SYSTEMS, 2001, 38 (02) : 195 - 204
  • [7] ON THE BUSY PERIOD OF AN M/G/1/K QUEUE
    TAKAGI, H
    LAMAIRE, RO
    [J]. OPERATIONS RESEARCH, 1994, 42 (01) : 192 - 193
  • [8] On the busy period of the M/G/1 retrial queue
    Artalejo, JR
    Lopez-Herrero, MJ
    [J]. NAVAL RESEARCH LOGISTICS, 2000, 47 (02) : 115 - 127
  • [9] Services within a Busy Period of an M/M/1 Queue and Dyck Paths
    Moez Draief
    Jean Mairesse
    [J]. Queueing Systems, 2005, 49 : 73 - 84
  • [10] Services within a busy period of an M/M/1 queue and Dyck paths
    Draief, M
    Mairesse, J
    [J]. QUEUEING SYSTEMS, 2005, 49 (01) : 73 - 84