Some Korovkin type approximation applications of power series methods

被引:0
|
作者
Havva Uluçay
Mehmet Ünver
Dilek Söylemez
机构
[1] Istanbul Technical University,Department of Mathematics, Faculty of Science and Letters
[2] Ankara University,Department of Mathematics, Faculty of Science
[3] Selçuk University,Department of Mathematics, Faculty of Science
关键词
Power series method; -Statistical convergence; Integral summability; Korovkin type approximation theorem; 40C10; 40G15; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
Korovkin type approximation via summability methods is one of the recent interests of the mathematical analysis. In this paper, we prove some Korovkin type approximation theorems in Lq[a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{q}[a,b]$$\end{document}, the space of all measurable real valued qth power Lebesgue integrable functions defined on [a, b] for q≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\ge 1$$\end{document}, and C[a, b], the space of all continuous real valued functions defined on [a, b], via statistical convergence with respect to power series (summability) methods, integral summability methods and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-statistical convergence of the power series transforms of positive linear operators. We also show with examples that the results obtained in the present paper are stronger than some existing approximation theorems in the literature.
引用
收藏
相关论文
共 50 条
  • [1] Some Korovkin type approximation applications of power series methods
    Ulucay, Havva
    Unver, Mehmet
    Soylemez, Dilek
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
  • [2] FUZZY TRIGONOMETRIC KOROVKIN TYPE APPROXIMATION VIA POWER SERIES METHODS OF SUMMABILITY
    Yavuz, Enes
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 123 - 132
  • [3] Fuzzy trigonometric korovkin type approximation via power series methods of summability
    Yavuz, Enes (enes.yavuz@cbu.edu.tr), 2018, Politechnica University of Bucharest (80):
  • [4] Some fuzzy Korovkin type approximation theorems via power series summability method
    B. Baxhaku
    P. N. Agrawal
    R. Shukla
    Soft Computing, 2022, 26 : 11373 - 11379
  • [5] Some fuzzy Korovkin type approximation theorems via power series summability method
    Baxhaku, B.
    Agrawal, P. N.
    Shukla, R.
    SOFT COMPUTING, 2022, 26 (21) : 11373 - 11379
  • [6] Korovkin type approximation theorems via power series method
    E. Taş
    Ö. G. Atlıhan
    São Paulo Journal of Mathematical Sciences, 2019, 13 : 696 - 707
  • [7] Korovkin type approximation theorems via power series method
    Tas, E.
    Atlihan, O. G.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (02): : 696 - 707
  • [8] A Korovkin-Type Approximation Theorem and Power Series Method
    Ozguc, Ilknur
    Tas, Emre
    RESULTS IN MATHEMATICS, 2016, 69 (3-4) : 497 - 504
  • [9] A Korovkin-Type Approximation Theorem and Power Series Method
    İlknur Özgüç
    Emre Taş
    Results in Mathematics, 2016, 69 : 497 - 504
  • [10] KOROVKIN TYPE APPROXIMATION THEOREMS IN WEIGHTED SPACES VIA POWER SERIES METHOD
    Tas, E.
    Yurdakadim, T.
    Atlihan, O. G.
    OPERATORS AND MATRICES, 2018, 12 (02): : 529 - 535