D-bound and Bekenstein bound for McVittie solution surrounded by dark energy cosmological fields

被引:0
|
作者
H. Hadi
Y. Heydarzade
F. Darabi
K. Atazadeh
机构
[1] Azarbaijan Shahid Madani University,Department of Physics
[2] Bilkent University,Department of Mathematics, Faculty of Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The cosmological candidate fields for dark energy as quintessence, phantom and cosmological constant are studied in terms of an entropic hypothesis imposed on the McVittie solution surrounded by dark energy. We certify this hypothesis as “D-bound-Bekenstein bound identification” for dilute systems and use it as a criterion to determine which candidate of dark energy can satisfy this criterion for a dilute McVittie solution. It turns out that only the cosmological constant can pass this criterion successfully while the quintessence and phantom fields fail, as non-viable dark energy fields for this particular black hole solution. Moreover, assuming this black hole to possess the saturated entropy, the entropy-area law and the holographic principle can put two constraints on the radius R of the cosmological horizon. The first one shows that the Hubble radius is discrete such that for any arbitrary value of the black hole mass m0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_{0}$$\end{document}, the value of R is determined up to an integer number. The latter one shows that when a black hole is immersed in a cosmological background, the radius of the cosmological horizon is constrained as R<1H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<\frac{1}{H}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] D-bound and Bekenstein bound for McVittie solution surrounded by dark energy cosmological fields
    Hadi, H.
    Heydarzade, Y.
    Darabi, F.
    Atazadeh, K.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07):
  • [2] D-bound and the Bekenstein bound for the surrounded Vaidya black hole
    H. Hadi
    F. Darabi
    K. Atazadeh
    Y. Heydarzade
    The European Physical Journal C, 2020, 80
  • [3] D-bound and the Bekenstein bound for the surrounded Vaidya black hole
    Hadi, H.
    Darabi, F.
    Atazadeh, K.
    Heydarzade, Y.
    EUROPEAN PHYSICAL JOURNAL C, 2020, 80 (12):
  • [4] Localization of Negative Energy and the Bekenstein Bound
    Blanco, David D.
    Casini, Horacio
    PHYSICAL REVIEW LETTERS, 2013, 111 (22)
  • [5] Surrounded Vaidya solution by cosmological fields
    Y. Heydarzade
    F. Darabi
    The European Physical Journal C, 2018, 78
  • [6] Surrounded Vaidya solution by cosmological fields
    Heydarzade, Y.
    Darabi, F.
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (07):
  • [7] Surrounded Bonnor–Vaidya solution by cosmological fields
    Y. Heydarzade
    F. Darabi
    The European Physical Journal C, 2018, 78
  • [8] Theoretical and Observational Constraints of Bound Dark Energy with Precision Cosmological Data
    de la Macorra, Axel
    Almaraz, Erick
    PHYSICAL REVIEW LETTERS, 2018, 121 (16)
  • [9] Testing bound dark energy with cosmological parameter and fundamental constant evolution
    Thompson, Rodger I.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (04) : 4778 - 4785
  • [10] Cosmological implications of Dark Matter bound states
    Mitridate, Andrea
    Redi, Michele
    Smirnov, Juri
    Strumia, Alessandro
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (05):