Thermal Diffusivity, Heat Capacity, and Thermal Conductivity of Oil Reservoir Rock at High Temperatures

被引:0
|
作者
Ilmutdin M. Abdulagatov
Zumrud Z. Abdulagatova
Boris A. Grigor’ev
Suleiman N. Kallaev
Zairbek M. Omarov
Abumuslim G. Bakmaev
Asbat E. Ramazanova
Kurban M. Rabadanov
机构
[1] Geothermal & Renewal Energy Institute,Thermophysical Properties Division
[2] High Temperature Joint Institute of the Russian Academy of Sciences,undefined
[3] Dagestan State University,undefined
[4] Gubkin Russian State University of Oil and Gas,undefined
[5] National Research University,undefined
[6] Institute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences,undefined
来源
关键词
Laser Flash method; Heat capacity; Heat transfer modeling; Thermal diffusivity; Thermal-conductivity; Oil reservoir rock;
D O I
暂无
中图分类号
学科分类号
摘要
The contact-free, laser-flash (LFA 457) apparatus was used to measure the thermal diffusivity (a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}) of oil reservoir rock samples over the temperature range from (303 to 723) K at atmospheric pressure. The measurements of the heat capacity (CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{P}$$\end{document}) of the same oil reservoir rock sample were performed over a temperature range from (305 to 771) K using DSC 204 F1 technique. The combined expanded uncertainties of the temperature (T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}), thermal diffusivity (a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document}) and heat capacity (CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{P}$$\end{document}) measurements at the 95% confidence level with a coverage factor of k = 2 are estimated to be 20 mK, 3 % and 1 %, respectively. The measured thermal diffusivity and heat capacity data and their temperature dependence for oil reservoir rock were interpreted in terms of the damped harmonic oscillator (DHO) theory and modified multi-component Einstein model, respectively. Theoretically based correlations for the thermal diffusivity (DHO model) and heat capacity (multi-peak model based on vibrational spectra) were adopted to accurately represent the measured data. The measured values of a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a$$\end{document} and CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{P}$$\end{document} together with the density (ρ) data were used to calculate the derived values of thermal conductivity (λ=ρCPa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = \rho C_{P} a$$\end{document}) of the oil reservoir rock. The effect of phase changes (dehydration and thermal decomposition) in the intra pore fluids (oil and water) on thermal properties (thermal diffusivity, heat capacity, and thermal conductivity) of oil reservoir rock samples have been studied. We observed rapid increase of the heat capacity of the oil reservoir rock sample in distinct temperature ranges, around 323 K and 745 K. We attribute these irregularities in temperature dependence of thermal diffusivity and heat capacity to the dehydration (intensive vaporization of pore water) and the thermal decomposition of the residual heavy oil component (pyrolysis), which occurs at high temperatures. Based on the present measured thermophysical property data we have developed a model that simulated the heat transfer process in an oil reservoir where the thermal diffusivity of the reservoir media is considered as a function of temperature. The temperature variation at each point of the reservoir is calculated using a heat transfer equation with temperature dependent thermal properties of the reservoir media, i.e., the reservoir temperature profile, Tx,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\left( {x,t} \right)$$\end{document}, was simulated with thermophysical property changes of the reservoir media. We observed heat transfer alteration of the oil reservoir media due to temperature dependence of the thermal diffusivity. It was shown that taking into account the temperature dependence of the thermal diffusivity, considerably affects the heat transfer alteration of oil reservoirs.
引用
收藏
相关论文
共 50 条
  • [1] Thermal Diffusivity, Heat Capacity, and Thermal Conductivity of Oil Reservoir Rock at High Temperatures
    Abdulagatov, Ilmutdin M.
    Abdulagatova, Zumrud Z.
    Grigor'ev, Boris A.
    Kallaev, Suleiman N.
    Omarov, Zairbek M.
    Bakmaev, Abumuslim G.
    Ramazanova, Asbat E.
    Rabadanov, Kurban M.
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2021, 42 (09)
  • [2] Heat capacity and thermal diffusivity of heavy oil saturated rock materials at high temperatures
    Abdulagatov, Ilmutdin M.
    Abdulagatova, Zumrud Z.
    Kallaev, Suleiman N.
    Bakmaev, Abumuslim G.
    Omarov, Zairbek M.
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 142 (01) : 519 - 534
  • [3] Heat capacity and thermal diffusivity of heavy oil saturated rock materials at high temperatures
    Ilmutdin M. Abdulagatov
    Zumrud Z. Abdulagatova
    Suleiman N. Kallaev
    Abumuslim G. Bakmaev
    Zairbek M. Omarov
    [J]. Journal of Thermal Analysis and Calorimetry, 2020, 142 : 519 - 534
  • [4] Thermal diffusivity and heat conductivity at high temperatures
    Perl, M
    Leitner, G
    [J]. JOURNAL OF THERMAL ANALYSIS, 1996, 47 (02): : 643 - 650
  • [5] Temperature effect on thermal-diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials
    Abdulagatova, Z. Z.
    Kallaev, S. N.
    Omarov, Z. M.
    Bakmaev, A. G.
    Grigor'ev, B. A.
    Abdulagatov, I. M.
    [J]. GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2020, 6 (01)
  • [6] Temperature effect on thermal-diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials
    Z. Z. Abdulagatova
    S. N. Kallaev
    Z. M. Omarov
    A. G. Bakmaev
    B. A. Grigor’ev
    I. M. Abdulagatov
    [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6
  • [7] THERMAL DIFFUSIVITY AND THERMAL CONDUCTIVITY OF VANADIUM AT HIGH TEMPERATURES
    ZINOVEV, VE
    KRENTSIS, RP
    GELD, PV
    [J]. SOVIET PHYSICS SOLID STATE,USSR, 1970, 11 (10): : 2475 - &
  • [8] THERMAL CONDUCTIVITY AND THERMAL DIFFUSIVITY OF PLATINUM AT HIGH TEMPERATURES
    ZINOVEV, VE
    KRENTSIS, RP
    GELD, PV
    [J]. SOVIET PHYSICS SOLID STATE,USSR, 1969, 10 (09): : 2228 - &
  • [9] THERMAL DIFFUSIVITY AND THERMAL CONDUCTIVITY OF PALLADIUM AT HIGH TEMPERATURES
    ZINOVEV, VE
    KRENTSIS, RP
    GELD, PV
    [J]. SOVIET PHYSICS SOLID STATE,USSR, 1969, 11 (03): : 685 - +
  • [10] THERMAL DIFFUSIVITY AND THERMAL CONDUCTIVITY OF CHROMIUM AT HIGH TEMPERATURES
    ZINOVEV, VE
    KRENTSIS, RP
    GELD, PV
    [J]. SOVIET PHYSICS SOLID STATE,USSR, 1970, 11 (07): : 1623 - +