Real-time prediction of gas flow dynamics in diesel engines using a deep neural operator framework

被引:0
|
作者
Varun Kumar
Somdatta Goswami
Daniel Smith
George Em Karniadakis
机构
[1] Brown University,School of Engineering
[2] Brown University,Division of Applied Mathematics
[3] Cummins Inc.,undefined
来源
Applied Intelligence | 2024年 / 54卷
关键词
Diesel engine; Neural networks; Gas flow dynamics; Operator network; Epistemic uncertainty;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this work is to address the need for fast and accurate models for analyzing transient gas flow dynamics in diesel engines. We employ a neural operator-based surrogate model, called DeepONet, to learn and predict the transient gas flow dynamics in real-time. The neural operator maps the relationship between engine control stimulus, namely engine speed, fuel injection per cycle, EGR, and VGT valve openings with seven output states that include intake and exhaust manifold pressures, residual gas fraction inside the cylinder, as well as the dynamics of the EGR and VGT actuators. To establish a benchmark, we compare results from the DeepONet model to a mean-value gas flow engine model simulated with Simulink. We observe a maximum relative L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal L_2$$\end{document} error of 6.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6.5\%$$\end{document}, a reasonable accuracy for transient dynamics. The DeepONet model also exhibits good robustness to noisy input functions. Additionally, to evaluate the epistemic uncertainty in our model predictions, we adopt a mean ensemble approach, yielding a worst-case error of 12%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12\%$$\end{document} at a standard deviation of 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\sigma $$\end{document} from the mean value. In summary, our proposed framework offers real-time prediction capabilities and facilitates data-driven learning of complex input-output operator mappings. This makes the DeepONet surrogate particularly useful for preliminary analyses of system dynamics, control system optimization, and health monitoring of sub-systems.
引用
收藏
页码:14 / 34
页数:20
相关论文
共 50 条
  • [1] Real-time prediction of gas flow dynamics in diesel engines using a deep neural operator framework
    Kumar, Varun
    Goswami, Somdatta
    Smith, Daniel
    Karniadakis, George Em
    APPLIED INTELLIGENCE, 2024, 54 (01) : 14 - 34
  • [2] Prediction of real-time NO based on the in-cylinder pressure in Diesel engines
    Park, Wonah
    Lee, Junyong
    Min, Kyoungdoug
    Yu, Jun
    Park, Seungil
    Cho, Sunghwan
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2013, 34 : 3075 - 3082
  • [3] A real-time model for the prediction of the NOx emissions in DI diesel engines
    Schilling, Alexander
    Amstutz, Alois
    Onder, Christopher H.
    Guzzella, Lino
    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-4, 2006, : 1221 - 1226
  • [4] Real-time diagnostics in the EGR system of diesel engines
    Mohammadpour, Javad
    Grigoriadis, Karolos M.
    Franchek, Matthew A.
    Zwissler, Benjamin J.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 1002 - +
  • [5] A real-time hourly ozone prediction system using deep convolutional neural network
    Ebrahim Eslami
    Yunsoo Choi
    Yannic Lops
    Alqamah Sayeed
    Neural Computing and Applications, 2020, 32 : 8783 - 8797
  • [6] A real-time hourly ozone prediction system using deep convolutional neural network
    Eslami, Ebrahim
    Choi, Yunsoo
    Lops, Yannic
    Sayeed, Alqamah
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (13): : 8783 - 8797
  • [7] Real-Time Stock Prediction using Neural Network
    Shakya, Abin
    Pokhrel, Anuj
    Bhattarai, Ashuta
    Sitikhu, Pinky
    Shakya, Subarna
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE CONFLUENCE 2018 ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING, 2018, : 71 - 74
  • [8] NOx emissions prediction in diesel engines: a deep neural network approach
    Samosir, Bernike Febriana
    Quach, Nhu Y.
    Chul, Oh Kwang
    Lim, Ocktaeck
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (01) : 757 - 771
  • [9] NOx emissions prediction in diesel engines: a deep neural network approach
    Bernike Febriana Samosir
    Nhu Y. Quach
    Oh Kwang Chul
    Ocktaeck Lim
    Environmental Science and Pollution Research, 2024, 31 : 713 - 722
  • [10] Methods of Real-Time Parametric Diagnostics for Marine Diesel Engines
    Varbanets, Roman
    Minchev, Dmytro
    Kucherenko, Yury
    Zalozh, Vitalii
    Kyrylash, Olena
    Tarasenko, Tetyana
    POLISH MARITIME RESEARCH, 2024, 31 (03) : 71 - 84