Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process

被引:0
|
作者
Ismat Ara
Fardad Azarmi
X. W. Tangpong
机构
[1] North Dakota State University,Mechanical Engineering
关键词
Metal additive manufacturing; Selective laser melting; 316L stainless steel; Microstructural characterization; Crystallographic structure; Porosity;
D O I
暂无
中图分类号
学科分类号
摘要
Selective laser melting (SLM) is used to fabricate nearly fully dense 316L stainless steel (SS) samples in this study. A variety of advanced characterization techniques were conducted to identify dominant phases, important crystallographic features, microstructural features, and elemental composition. Porosity of the sample was found to be 0.02% which is the lowest porosity content reported for SLM-processed 316L SS. Microstructural analysis exhibits some columnar grains with epitaxial growth representing complete adhesion between the layers. Existence of some fine cellular grains inside the melt pools is an indication of rapid solidification during the printing process. The strength of this study lies in the addition of new crystallographic information such as lattice parameters of SLM-processed 316L. Finally, using information obtained from the literature, it was possible to better understand the effect of chosen process parameters to achieve nearly fully dense material in the present study.
引用
收藏
页码:754 / 767
页数:13
相关论文
共 50 条
  • [1] Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process
    Ara, Ismat
    Azarmi, Fardad
    Tangpong, X. W.
    [J]. METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2021, 10 (06) : 754 - 767
  • [2] Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process
    Ara, Ismat
    Azarmi, Fardad
    Tangpong, X.W.
    [J]. Metallography, Microstructure, and Analysis, 2021, 10 (06): : 754 - 767
  • [3] Microstructure and anisotropic tensile performance of 316L stainless steel manufactured by selective laser melting
    Wang, Lin
    [J]. FRATTURA ED INTEGRITA STRUTTURALE-FRACTURE AND STRUCTURAL INTEGRITY, 2022, 16 (60): : 380 - 391
  • [4] Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM)
    Wang, Zhentao
    Yang, Shanglei
    Huang, Yubao
    Fan, Cong
    Peng, Zeng
    Gao, Zihao
    [J]. MATERIALS, 2021, 14 (24)
  • [5] Corrosion behaviour of 316L stainless steel manufactured by selective laser melting
    Andreatta, Francesco
    Lanzutti, Alex
    Vaglio, Emanuele
    Totis, Giovanni
    Sortino, Marco
    Fedrizzi, Lorenzo
    [J]. MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2019, 70 (09): : 1633 - 1645
  • [6] Microstructure and mechanical properties relationship of additively manufactured 316L stainless steel by selective laser melting
    Puichaud, Anne-Helene
    Flament, Camille
    Chniouel, Aziz
    Lomello, Fernando
    Rouesne, Elodie
    Giroux, Pierre-Francois
    Maskrot, Hicham
    Schuster, Frederic
    Bechade, Jean-Luc
    [J]. EPJ NUCLEAR SCIENCES & TECHNOLOGIES, 2019, 5
  • [7] Microstructure and Mechanical Properties of 316L Stainless Steel in the Selective Laser Melting
    He Ketai
    Zhou Liu
    Yang Lechang
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (09)
  • [8] Biaxial tensile behavior of stainless steel 316L manufactured by selective laser melting
    Wang, Hao
    Shu, Xiaoyong
    Zhao, Jianping
    Alexandrov, I. V.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [9] Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting
    Obeidi, Muhannad A.
    McCarthy, Eanna
    O'Connell, Barry
    Ul Ahad, Inam
    Brabazon, Dermot
    [J]. MATERIALS, 2019, 12 (06):
  • [10] Corrosion Resistance Measurement of 316L Stainless Steel Manufactured by Selective Laser Melting
    Guzman-Nogales, Rigoberto
    Estupinan-Lopez, Francisco
    Gaona-Tiburcio, Citlalli
    Lopez-Botello, Omar E.
    Ramirez-Rodriguez, Juan G.
    Zambrano-Robledo, Patricia C.
    [J]. MATERIALS, 2021, 14 (16)