Submanifolds with parallel normalized mean curvature vector in a unit sphere
被引:0
|
作者:
Jing Zhuang
论文数: 0引用数: 0
h-index: 0
机构:Xuzhou Normal University,Department of Mathematics
Jing Zhuang
Yun-tao Zhang
论文数: 0引用数: 0
h-index: 0
机构:Xuzhou Normal University,Department of Mathematics
Yun-tao Zhang
机构:
[1] Xuzhou Normal University,Department of Mathematics
来源:
Archiv der Mathematik
|
2011年
/
96卷
关键词:
Primary 53C42;
Secondary 53B30;
Submanifolds;
Clifford torus;
Mean curvature vector;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let Mn be an n-dimensional closed submanifold of a sphere with parallel normalized mean curvature vector. Denote by S and H the squared norm of the second fundamental form and the mean curvature of Mn, respectively. Assume that the fundamental group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\pi_{1}(M^{n})}$$\end{document} of Mn is infinite and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${S\, \leqslant\, S(H)=n+\frac{n^{3}H^{2}}{2(n-1)}-\frac{n(n-2)H}{2(n-1)}\sqrt{n^{2}H^{2}+4(n-1)}}$$\end{document}, then S is constant, S = S(H), and Mn is isometric to a Clifford torus \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${S^{1}(\sqrt{1-r^{2}})\times S^{n-1}(r)}$$\end{document} with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${r^{2}\leqslant \frac{n-1}{n}}$$\end{document}.