Submanifolds with parallel normalized mean curvature vector in a unit sphere

被引:0
|
作者
Jing Zhuang
Yun-tao Zhang
机构
[1] Xuzhou Normal University,Department of Mathematics
来源
Archiv der Mathematik | 2011年 / 96卷
关键词
Primary 53C42; Secondary 53B30; Submanifolds; Clifford torus; Mean curvature vector;
D O I
暂无
中图分类号
学科分类号
摘要
Let Mn be an n-dimensional closed submanifold of a sphere with parallel normalized mean curvature vector. Denote by S and H the squared norm of the second fundamental form and the mean curvature of Mn, respectively. Assume that the fundamental group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pi_{1}(M^{n})}$$\end{document} of Mn is infinite and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S\, \leqslant\, S(H)=n+\frac{n^{3}H^{2}}{2(n-1)}-\frac{n(n-2)H}{2(n-1)}\sqrt{n^{2}H^{2}+4(n-1)}}$$\end{document}, then S is constant, S = S(H), and Mn is isometric to a Clifford torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^{1}(\sqrt{1-r^{2}})\times S^{n-1}(r)}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${r^{2}\leqslant \frac{n-1}{n}}$$\end{document}.
引用
收藏
页码:281 / 290
页数:9
相关论文
共 50 条