Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization

被引:0
|
作者
Suyun Liu
Luis Nunes Vicente
机构
[1] Lehigh University,Department of Industrial and Systems Engineering
[2] Centre for Mathematics of the University of Coimbra (CMUC),undefined
关键词
Multi-objective optimization; Pareto front; Stochastic optimization; Alternating optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Stochastic alternating algorithms for bi-objective optimization are considered when optimizing two conflicting functions for which optimization steps have to be applied separately for each function. Such algorithms consist of applying a certain number of steps of gradient or subgradient descent on each single objective at each iteration. In this paper, we show that stochastic alternating algorithms achieve a sublinear convergence rate of O(1/T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/T)$$\end{document}, under strong convexity, for the determination of a minimizer of a weighted-sum of the two functions, parameterized by the number of steps applied on each of them. An extension to the convex case is presented for which the rate weakens to O(1/T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {O}}(1/\sqrt{T})$$\end{document}. These rates are valid also in the non-smooth case. Importantly, by varying the proportion of steps applied to each function, one can determine an approximation to the Pareto front.
引用
收藏
页码:165 / 186
页数:21
相关论文
共 50 条
  • [1] Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization
    Liu, Suyun
    Vicente, Luis Nunes
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (1) : 165 - 186
  • [2] A Trust-Region Algorithm for Bi-Objective Stochastic Optimization
    Kim, Sujin
    Ryu, Jong-hyun
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS), 2011, 4 : 1422 - 1430
  • [3] An Efficient Evolutionary Algorithm for Chance-Constrained Bi-Objective Stochastic Optimization
    Liu, Bo
    Zhang, Qingfu
    Fernandez, Francisco V.
    Gielen, Georges G. E.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (06) : 786 - 796
  • [4] PERFORMANCE EVALUATION AND BI-OBJECTIVE OPTIMIZATION FOR F-POLICY QUEUE WITH ALTERNATING SERVICE RATES
    Wu, Chia-huang
    Yang, Dong-yuh
    Yong, Chia-ru
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (05) : 3819 - 3839
  • [5] AN UNBIASED BI-OBJECTIVE OPTIMIZATION MODEL AND ALGORITHM FOR CONSTRAINED OPTIMIZATION
    Dong, Ning
    Wang, Yuping
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (08)
  • [6] A Bi-Objective Evolutionary Algorithm for Multimodal Multiobjective Optimization
    Wei, Zhifang
    Gao, Weifeng
    Gong, Maoguo
    Yen, Gary G.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (01) : 168 - 177
  • [7] Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm
    Deb, Kalyanmoy
    Saha, Amit
    [J]. EVOLUTIONARY COMPUTATION, 2012, 20 (01) : 27 - 62
  • [8] On efficiency of a single variable bi-objective optimization algorithm
    Calvin, James M.
    Zilinskas, Antanas
    [J]. OPTIMIZATION LETTERS, 2020, 14 (01) : 259 - 267
  • [9] On efficiency of a single variable bi-objective optimization algorithm
    James M. Calvin
    Antanas Žilinskas
    [J]. Optimization Letters, 2020, 14 : 259 - 267
  • [10] A model of anytime algorithm performance for bi-objective optimization
    Jesus, Alexandre D.
    Paquete, Luis
    Liefooghe, Arnaud
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (02) : 329 - 350