A weak generalized localization criterion for multiple Walsh-Fourier series with Jk-lacunary sequence of rectangular partial sums

被引:0
|
作者
S. K. Bloshanskaya
I. L. Bloshanskii
机构
[1] National Research Nuclear University MEPhI (Moscow Engineering Physics Institute),
[2] Moscow State Regional University,undefined
关键词
Fourier Series; STEKLOV Institute; Lacunary Sequence; Multiple Fourier Series; Trigonometric System;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain a criterion for the validity of weak generalized localization almost everywhere on an arbitrary set of positive measure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A}$$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A} \subset \mathbb{I}^N = \{ x \in \mathbb{R}^N :0 \leqslant x_j < 1,j = 1,2, \ldots ,N\}$$\end{document}, N ≥ 3 (in terms of the structure and geometry of the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A}$$\end{document}), for multiple Walsh-Fourier series (summed over rectangles) of functions f in the classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_p (\mathbb{I}^N )$$\end{document}, p > 1 (i.e., necessary and sufficient conditions for the convergence almost everywhere of the Fourier series on some subset of positive measure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A}_1$$\end{document} of the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A}$$\end{document}, when the function expanded in a series equals zero on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{A}$$\end{document}), in the case when the rectangular partial sums Sn(x; f) of this series have indices n = (n1, …, nN) ∈ ℤN in which some components are elements of (single) lacunary sequences.
引用
收藏
页码:34 / 55
页数:21
相关论文
共 50 条