Mathematical Modelling of Dengue Transmission with Intervention Strategies Using Fractional Derivatives

被引:0
|
作者
Nur ’Izzati Hamdan
Adem Kilicman
机构
[1] Universiti Teknologi MARA,School of Mathematical Sciences, College of Computing, Informatics and Media
[2] Universiti Putra Malaysia (UPM),Department of Mathematics and Statistics, Faculty of Science
来源
关键词
Dengue; Global stability; Fractional derivative; Lyapunov function; Dengue control;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a deterministic mathematical model of dengue based on a system of fractional-order differential equations (FODEs). In this study, we consider dengue control strategies that are relevant to the current situation in Malaysia. They are the use of adulticides, larvicides, destruction of the breeding sites, and individual protection. The global stability of the disease-free equilibrium and the endemic equilibrium is constructed using the Lyapunov function theory. The relations between the order of the operator and control parameters are briefly analysed. Numerical simulations are performed to verify theoretical results and examine the significance of each intervention strategy in controlling the spread of dengue in the community. The model shows that vector control tools are the most efficient method to combat the spread of the dengue virus, and when combined with individual protection, make it more effective. In fact, the massive use of personal protection alone can significantly reduce the number of dengue cases. Inversely, mechanical control alone cannot suppress the excessive number of infections in the population, although it can reduce the Aedes mosquito population. The result of the real-data fitting revealed that the FODE model slightly outperformed the integer-order model. Thus, we suggest that the FODE approach is worth to be considered in modelling an infectious disease like dengue.
引用
收藏
相关论文
共 50 条
  • [31] Modelling the transmission dynamics of dengue in the presence of Wolbachia
    Ndii, Meksianis Z.
    Hickson, R. I.
    Allingham, David
    Mercer, G. N.
    MATHEMATICAL BIOSCIENCES, 2015, 262 : 157 - 166
  • [32] EVALUATING THE IMPACT OF ANTHELMINTIC-BASED INTERVENTION STRATEGIES FOR CONTROLLING <it>LOA LOA</it>: A MATHEMATICAL MODELLING STUDY USING EPILOA
    Whittaker, Charles
    Walker, Martin
    Pion, Sebastien
    Chesnais, Cedric
    Boussinesq, Michel
    Basanez, Maria-Gloria
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2018, 99 (04): : 16 - 16
  • [33] Mathematical model analysis of effective intervention strategies on transmission dynamics of hepatitis B virus
    Firaol Asfaw Wodajo
    Dawit Melesse Gebru
    Haileyesus Tessema Alemneh
    Scientific Reports, 13
  • [34] Mathematical model analysis of effective intervention strategies on transmission dynamics of hepatitis B virus
    Wodajo, Firaol Asfaw
    Gebru, Dawit Melesse
    Alemneh, Haileyesus Tessema
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [36] Dengue: Mathematical modelling of cytokine levels in the evoultion of severity
    Jayasundara, P.
    Malavige, N.
    Perera, S.
    Jayasinghe, S.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2016, 45 : 333 - 333
  • [37] Mathematical Modelling of Immune Parameters in the Evolution of Severe Dengue
    Premaratne, M. K.
    Perera, S. S. N.
    Malavige, G. N.
    Jayasinghe, Saroj
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2017, 2017
  • [38] Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada
    Tuite, Ashleigh R.
    Fisman, David N.
    Greer, Amy L.
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2020, 192 (19) : E497 - E505
  • [39] Modelling the control strategies against dengue in Singapore
    Burattini, M. N.
    Chen, M.
    Chow, A.
    Coutinho, F. A. B.
    Goh, K. T.
    Lopez, L. F.
    Ma, S.
    Massad, E.
    EPIDEMIOLOGY AND INFECTION, 2008, 136 (03): : 309 - 319
  • [40] FRACTIONAL DYNAMICS OF THE TRANSMISSION PHENOMENA OF DENGUE INFECTION WITH VACCINATION
    Jan, R. A. S. H. I. D.
    Boulaaras, S. A. L. A. H.
    Alyobi, S. U. L. T. A. N.
    Rajagopal, K. A. R. T. H. I. K. E. Y. A. N.
    Jawad, M. U. H. A. M. M. A. D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (08): : 2096 - 2117