The Lowest Eigenvalue of Schrödinger Operators on Compact Manifolds

被引:0
|
作者
Michael G. Dabkowski
Michael T. Lock
机构
[1] Lawrence Technological University,Department of Mathematics
[2] University of Texas,Department of Mathematics
来源
Potential Analysis | 2019年 / 50卷
关键词
Schrödinger equation; Spectral problems; Riemannian geometry; 53C21; 58J05; 35J10; 35P15;
D O I
暂无
中图分类号
学科分类号
摘要
The lowest eigenvalue of the Schrödinger operator −Δ+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-{\Delta }+\mathcal {V}$\end{document} on a compact Riemannian manifold without boundary is studied. We focus on the particularly subtle case of a sign changing potential with positive average.
引用
收藏
页码:621 / 630
页数:9
相关论文
共 50 条
  • [1] The Lowest Eigenvalue of Schrodinger Operators on Compact Manifolds
    Dabkowski, Michael G.
    Lock, Michael T.
    POTENTIAL ANALYSIS, 2019, 50 (04) : 621 - 630
  • [2] Stability Estimates for the Lowest Eigenvalue of a Schrödinger Operator
    Eric A. Carlen
    Rupert L. Frank
    Elliott H. Lieb
    Geometric and Functional Analysis, 2014, 24 : 63 - 84
  • [3] On Minimal Eigenvalues¶of Schrödinger Operators on Manifolds
    Pedro Freitas
    Communications in Mathematical Physics, 2001, 217 : 375 - 382
  • [4] Riesz Transforms of Schrödinger Operators on Manifolds
    Joyce Assaad
    El Maati Ouhabaz
    Journal of Geometric Analysis, 2012, 22 : 1108 - 1136
  • [5] Second Eigenvalue of Schrödinger Operators¶and Mean Curvature
    Ahmad El Soufi
    Saïd Ilias
    Communications in Mathematical Physics, 2000, 208 : 761 - 770
  • [6] Eigenvalue Estimates for Schrödinger Operators with Complex Potentials
    Ari Laptev
    Oleg Safronov
    Communications in Mathematical Physics, 2009, 292 : 29 - 54
  • [7] Discreteness of spectrum conditions for Schrödinger operators on manifolds
    V. A. Kondrat’ev
    M. A. Shubin
    Functional Analysis and Its Applications, 1999, 33 : 231 - 232
  • [8] Approximation of the Fractional Schrödinger Propagator on Compact Manifolds
    Jie Cheng Chen
    Da Shan Fan
    Fa You Zhao
    Acta Mathematica Sinica, English Series, 2021, 37 : 1485 - 1496
  • [9] On the essential spectrum of Schrödinger operators on Riemannian manifolds
    César Poupaud
    Mathematische Zeitschrift, 2005, 251 : 1 - 20
  • [10] Approximation of the Fractional Schr?dinger Propagator on Compact Manifolds
    Jie Cheng CHEN
    Da Shan FAN
    Fa You ZHAO
    ActaMathematicaSinica,EnglishSeries, 2021, (10) : 1485 - 1496