Alternating oblique projections for coupled linear systems

被引:0
|
作者
Luis Manuel Hernández-Ramos
机构
[1] Université “Pierre et Marie Curie” (Paris VI),Laboratoire “Jacques
[2] Universidad Central de Venezuela,Louis Lions”
来源
Numerical Algorithms | 2005年 / 38卷
关键词
domain decomposition; Uzawa; alternating projections; conjugate gradient method; preconditioner;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we propose the use of alternating oblique projections (AOP) for the solution of the saddle points systems resulting from the discretization of domain decomposition problems. These systems are called coupled linear systems. The AOP method is a descent method in which the descent direction is defined by using alternating oblique projections onto the search subspaces. We prove that this method is a preconditioned simple gradient (Uzawa) method with a particular preconditioner. Finally, a preconditioned conjugate gradient based version of AOP is proposed.
引用
收藏
页码:285 / 303
页数:18
相关论文
共 50 条
  • [1] Alternating oblique projections for coupled linear systems
    Hernández-Ramos, L
    NUMERICAL ALGORITHMS, 2005, 38 (04) : 285 - 303
  • [2] Incomplete oblique projections for solving large inconsistent linear systems
    H. D. Scolnik
    N. Echebest
    M. T. Guardarucci
    M. C. Vacchino
    Mathematical Programming, 2008, 111 : 273 - 300
  • [3] Incomplete oblique projections for solving large inconsistent linear systems
    Scolnik, H. D.
    Echebest, N.
    Guardarucci, M. T.
    Vacchino, M. C.
    MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) : 273 - 300
  • [4] Local Linear Convergence for Alternating and Averaged Nonconvex Projections
    Lewis, A. S.
    Luke, D. R.
    Malick, J.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (04) : 485 - 513
  • [5] Local Linear Convergence for Alternating and Averaged Nonconvex Projections
    A. S. Lewis
    D. R. Luke
    J. Malick
    Foundations of Computational Mathematics, 2009, 9 : 485 - 513
  • [6] OBLIQUE PROJECTIONS
    BLACK, PJ
    ACTA CRYSTALLOGRAPHICA, 1955, 8 (10): : 656 - 657
  • [7] Oblique Projections
    Veselic, K.
    DAMPED OSCILLATIONS OF LINEAR SYSTEMS: A MATHEMATICAL INTRODUCTION, 2011, 2023 : 55 - 60
  • [8] OPTIMIZING OBLIQUE PROJECTIONS FOR NONLINEAR SYSTEMS USING TRAJECTORIES
    Otto, Samuel E.
    Padovan, Alberto
    Rowley, Clarence W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1681 - A1702
  • [9] Local Linear Convergence for Inexact Alternating Projections on Nonconvex Sets
    Drusvyatskiy, D.
    Lewis, A. S.
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (03) : 669 - 681
  • [10] An alternating projections method for certain linear problems in a Hilbert space
    Department of Mathematics and Computer Science, Austin Peay State University, Clarksville
    TN
    37044, United States
    IMA Journal of Numerical Analysis, 1995, 15 (02): : 291 - 305