Conduction- and Valence-Band Energies in Bulk InAs1−xSbx and Type II InAs1−xSbx/InAs Strained-Layer Superlattices

被引:0
|
作者
Youxi Lin
Ding Wang
Dmitry Donetsky
Leon Shterengas
Gela Kipshidze
Gregory Belenky
Stefan P. Svensson
Wendy L. Sarney
Harry S. Hier
机构
[1] Stony Brook University,Department of ECE
[2] Army Research Laboratory,undefined
来源
关键词
InAsSb; SLS; energy-band offsets; bowing; broadening;
D O I
暂无
中图分类号
学科分类号
摘要
The energy gaps were studied in two types of structures: unrelaxed bulk InAs1−xSbx layers with x = 0.2 to 0.46 grown on metamorphic buffers and type II InAs1−xSbx/InAs strained-layer superlattices (SLS) with x = 0.225 to 0.296 in the temperature range from T = 13 K to 300 K. All structures were grown on GaSb substrates. The longest wavelength of photoluminescence (PL) at low temperatures was observed from bulk InAs0.56Sb0.44 with a peak at 10.3 μm and full-width at half-maximum (FWHM) of 11 meV. The PL data for the bulk InAs1−xSbx materials of various compositions imply an energy gap bowing parameter of 0.87 eV. A low-temperature PL peak at 9.1 μm with FWHM of 13 meV was observed for InAs0.704Sb0.296/InAs SLS. The PL spectrum of InAs0.775Sb0.225/InAs SLS under pulsed excitation revealed a second peak associated with recombination of electrons in the three-dimensional (3D) continuum with holes in the InAs0.775Sb0.225. This experiment determined the conduction-band offset in the InAs0.775Sb0.225/InAs SLS. The energies of the conduction and valence bands in unstrained InAs1−xSbx and their bowing with respect to the Sb composition are discussed.
引用
收藏
页码:918 / 926
页数:8
相关论文
共 50 条
  • [1] Conduction- and Valence-Band Energies in Bulk InAs1-xSbx and Type II InAs1-xSbx/InAs Strained-Layer Superlattices
    Lin, Youxi
    Wang, Ding
    Donetsky, Dmitry
    Shterengas, Leon
    Kipshidze, Gela
    Belenky, Gregory
    Svensson, Stefan P.
    Sarney, Wendy L.
    Hier, Harry S.
    [J]. JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (05) : 918 - 926
  • [2] Performance Simulation of Unipolar InAs/InAs1−xSbx Type-II Superlattice Photodetector
    Anand Singh
    Ravinder Pal
    [J]. Journal of Electronic Materials, 2018, 47 : 4653 - 4662
  • [3] Bias–selectable nBn dual–band long–/very long–wavelength infrared photodetectors based on InAs/InAs1−xSbx/AlAs1−xSbx type–II superlattices
    Abbas Haddadi
    Arash Dehzangi
    Romain Chevallier
    Sourav Adhikary
    Manijeh Razeghi
    [J]. Scientific Reports, 7
  • [4] Method of electron affinity evaluation for the type-2 InAs/InAs1−xSbx superlattice
    Tetiana Manyk
    Krzysztof Murawski
    Krystian Michalczewski
    Kacper Grodecki
    Jaroslaw Rutkowski
    Piotr Martyniuk
    [J]. Journal of Materials Science, 2020, 55 : 5135 - 5144
  • [5] Raman scattering from optical phonons in InAs1-xSbx/InAs strained-layer superlattices
    Artus, L
    Stradling, RA
    Li, YB
    Webb, SJ
    Yuen, WT
    Chung, SJ
    Cusco, R
    [J]. PHYSICAL REVIEW B, 1996, 54 (23): : 16373 - 16376
  • [6] THE PREPARATION OF INAS1-XSBX ALLOYS AND STRAINED-LAYER SUPERLATTICES BY MOCVD
    BIEFELD, RM
    [J]. JOURNAL OF CRYSTAL GROWTH, 1986, 77 (1-3) : 392 - 399
  • [7] QUANTUM TRANSPORT IN INAS1-XSBX/INSB STRAINED-LAYER SUPERLATTICES
    LE, T
    NORMAN, AG
    YUEN, WT
    HART, L
    FERGUSON, IT
    HARRIS, JJ
    PHILLIPS, CC
    STRADLING, RA
    [J]. SURFACE SCIENCE, 1994, 305 (1-3) : 337 - 342
  • [8] Electrical and Optical Properties of Unrelaxed InAs1 –xSbx Heteroepitaxial Structures
    R. R. Guseynov
    V. A. Tanriverdiyev
    G. L. Belenky
    G. Kipshidze
    Y. N. Aliyeva
    Kh. V. Aliguliyeva
    E. G. Alizade
    Kh. N. Ahmadova
    N. A. Abdullayev
    N. T. Mamedov
    V. N. Zverev
    [J]. Semiconductors, 2019, 53 : 906 - 910
  • [9] THE GROWTH OF INAS1-XSBX INAS STRAINED-LAYER SUPERLATTICES BY METALORGANIC CHEMICAL-VAPOR-DEPOSITION
    BIEFELD, RM
    BAUCOM, KC
    KURTZ, SR
    [J]. JOURNAL OF CRYSTAL GROWTH, 1994, 137 (1-2) : 231 - 234
  • [10] Opto-electronic Properties of Mid-Wavelength: n Type II InAs/InAs1−xSbx and Hg1−xCdxTe
    Roger E. De Wames
    [J]. Journal of Electronic Materials, 2016, 45 : 4697 - 4704