Strong Convergence of the Vorticity for the 2D Euler Equations in the Inviscid Limit

被引:0
|
作者
Gennaro Ciampa
Gianluca Crippa
Stefano Spirito
机构
[1] Università degli Studi di Padova,Dipartmento di Matematica” Tullio Levi Civita”
[2] Universität Basel,Departement Mathematik und Informatik
[3] Università degli Studi dell’Aquila,DISIM
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the uniform-in-time Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} convergence in the inviscid limit of a family ων\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega ^\nu $$\end{document} of solutions of the 2D Navier–Stokes equations towards a renormalized/Lagrangian solution ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} of the Euler equations. We also prove that, in the class of solutions with bounded vorticity, it is possible to obtain a rate for the convergence of ων\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega ^{\nu }$$\end{document} to ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} in Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}. Finally, we show that solutions of the Euler equations with Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} vorticity, obtained in the vanishing viscosity limit, conserve the kinetic energy. The proofs are given by using both a (stochastic) Lagrangian approach and an Eulerian approach.
引用
收藏
页码:295 / 326
页数:31
相关论文
共 50 条
  • [1] Strong Convergence of the Vorticity for the 2D Euler Equations in the Inviscid Limit
    Ciampa, Gennaro
    Crippa, Gianluca
    Spirito, Stefano
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (01) : 295 - 326
  • [2] Propagation of logarithmic regularity and inviscid limit for the 2D Euler equations
    Ciampa, Gennaro
    Crippa, Gianluca
    Spirito, Stefano
    [J]. MATHEMATICS IN ENGINEERING, 2024, 6 (04): : 494 - 509
  • [3] Vortex Axisymmetrization, Inviscid Damping, and Vorticity Depletion in the Linearized 2D Euler Equations
    Jacob Bedrossian
    Michele Coti Zelati
    Vlad Vicol
    [J]. Annals of PDE, 2019, 5
  • [4] Vortex Axisymmetrization, Inviscid Damping, and Vorticity Depletion in the Linearized 2D Euler Equations
    Bedrossian, Jacob
    Zelati, Michele Coti
    Vicol, Vlad
    [J]. ANNALS OF PDE, 2019, 5 (01)
  • [5] Strong convergence of the vorticity and conservation of the energy for the α-Euler equations
    Abbate, Stefano
    Crippa, Gianluca
    Spirito, Stefano
    [J]. NONLINEARITY, 2024, 37 (03)
  • [6] Confinement of vorticity for the 2D Euler-α equations
    Ambrose, David M.
    Lopes Filho, Milton C.
    Nussenzveig Lopes, Helena J.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (11) : 5472 - 5489
  • [7] Convergence of filtered weak solutions to the 2D Euler equations with measure-valued vorticity
    Gotoda, Takeshi
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (04) : 1485 - 1509
  • [8] VORTICITY CONVERGENCE FROM BOLTZMANN TO 2D INCOMPRESSIBLE EULER EQUATIONS BELOW YUDOVICH CLASS
    Kim, Chanwoo
    La, Joonhyun
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 3144 - 3202
  • [9] Convergence of filtered weak solutions to the 2D Euler equations with measure-valued vorticity
    Takeshi Gotoda
    [J]. Journal of Evolution Equations, 2020, 20 : 1485 - 1509
  • [10] STRONG CONTINUITY FOR THE 2D EULER EQUATIONS
    Crippa, Gianluca
    Semenova, Elizaveta
    Spirito, Stefano
    [J]. KINETIC AND RELATED MODELS, 2015, 8 (04) : 685 - 689