Frobenius Groups Generated by Quadratic Elements

被引:5
|
作者
A. Kh. Zhurtov
V. D. Mazurov
机构
[1] Gagarina 205-1,Akademika Koptyuga Prospekt, 4
[2] Institute of Mathematics SB RAS,undefined
关键词
Frobenius group; quadratic automorphism; quadratic element;
D O I
10.1023/A:1023932525056
中图分类号
学科分类号
摘要
An automorphism \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a$$ \end{document} of a group X is said to be quadratic if there exist integers \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$m = m\left( a \right)$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n = n\left( a \right)$$ \end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x^{a^2 } = x^n \left( {x^m } \right)^a = x^n x^{ma}$$ \end{document} for any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x \in X$$ \end{document}. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document} is a Frobenius group then an element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g \in X$$ \end{document} is said to be quadratic if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$g$$ \end{document} induces, by conjugation in the core of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}, a quadratic automorphism. By definition, a group H acts on a group F freely if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f^h = f$$ \end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f \in F$$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h \in H$$ \end{document} only with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f = 1$$ \end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h = 1$$ \end{document}. It is proved that a Frobenius group generated by two quadratic elements is finite and its core is commutative. In particular, any Frobenius group generated by two elements of order at most 4 is finite. Also we argue that a Frobenius group with finitely generated soluble core is finite. The results mentioned are used to show that a group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document} acting freely on an Abelian group is finite if it is generated by elements of order 3, and the order of a product of every two elements of order 3 in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document} is finite.
引用
收藏
页码:153 / 164
页数:11
相关论文
共 50 条
  • [1] Infinite Frobenius Groups Generated by Elements of Order 3
    Yang, Nanying
    Lytkina, Darla Victorovna
    Mazurov, Victor Danilovich
    Zhurtov, Archil Khazeshovich
    [J]. ALGEBRA COLLOQUIUM, 2020, 27 (04) : 741 - 748
  • [2] Frobenius groups generated by two elements of order 3
    Zhurtov, AK
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2001, 42 (03) : 450 - 454
  • [3] Frobenius Groups Generated by Two Elements of Order 3
    A. Kh. Zhurtov
    [J]. Siberian Mathematical Journal, 2001, 42 : 450 - 454
  • [4] On groups with Frobenius elements
    Popov, AM
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2005, 85 (1-3) : 257 - 264
  • [5] On Groups with Frobenius Elements
    A. M. Popov
    [J]. Acta Applicandae Mathematica, 2005, 85 : 257 - 264
  • [6] On groups with Frobenius elements
    A. M. Popov
    A. I. Sozutov
    [J]. Siberian Mathematical Journal, 2015, 56 : 352 - 357
  • [7] On groups with Frobenius elements
    Popov, A. M.
    Sozutov, A. I.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) : 352 - 357
  • [8] FROBENIUS GALOIS GROUPS OVER QUADRATIC FIELDS
    SONN, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1978, 31 (01) : 91 - 96
  • [9] Identifying Frobenius elements in Galois groups
    Dokchitser, Tim
    Dokchitser, Vladimir
    [J]. ALGEBRA & NUMBER THEORY, 2013, 7 (06) : 1325 - 1352
  • [10] ALGEBRAS GENERATED BY TWO QUADRATIC ELEMENTS
    Drensky, Vesselin
    Szigeti, Jeno
    van Wyk, Leon
    [J]. COMMUNICATIONS IN ALGEBRA, 2011, 39 (04) : 1344 - 1355