Sufficient conditions for global weak Pareto solutions in multiobjective optimization

被引:0
|
作者
Truong Q. Bao
Boris S. Mordukhovich
机构
[1] Northern Michigan University,Department of Mathematics and Computer Science
[2] Wayne State University,Department of Mathematics
来源
Positivity | 2012年 / 16卷
关键词
Multiobjective optimization; Variational analysis; Generalized differentiation; Set-valued optimization; Pareto solutions; Ordered Banach spaces; 49J53; 90C29;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive new sufficient conditions for global weak Pareto solutions to set-valued optimization problems with general geometric constraints of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \text{ maximize}\quad F(x) \quad \text{ subject} \text{ to}\quad x\in \Omega , \end{aligned}$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F: X\rightrightarrows Z$$\end{document} is a set-valued mapping between Banach spaces with a partial order on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document}. Our main results are established by using advanced tools of variational analysis and generalized differentiation; in particular, the extremal principle and full generalized differential calculus for the subdifferential/coderivative constructions involved. Various consequences and refined versions are also considered for special classes of problems in vector optimization including those with Lipschitzian data, with convex data, with finitely many objectives, and with no constraints.
引用
收藏
页码:579 / 602
页数:23
相关论文
共 50 条
  • [1] Sufficient conditions for global weak Pareto solutions in multiobjective optimization
    Bao, Truong Q.
    Mordukhovich, Boris S.
    [J]. POSITIVITY, 2012, 16 (03) : 579 - 602
  • [2] SUFFICIENT OPTIMALITY CONDITIONS FOR GLOBAL PARETO SOLUTIONS TO MULTIOBJECTIVE PROBLEMS WITH EQUILIBRIUM CONSTRAINTS
    Bao, Truong Q.
    Mordukhovich, Boris S.
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2014, 15 (01) : 105 - 127
  • [3] Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization
    Bokrantz, Rasmus
    Fredriksson, Albin
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 262 (02) : 682 - 692
  • [4] Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems
    de Oliveira, Washington Alves
    Antonio Rojas-Medar, Marko
    Beato-Moreno, Antonio
    Beatriz Hernandez-Jimenez, Maria
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (02) : 233 - 253
  • [5] Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems
    Washington Alves de Oliveira
    Marko Antonio Rojas-Medar
    Antonio Beato-Moreno
    Maria Beatriz Hernández-Jiménez
    [J]. Journal of Global Optimization, 2019, 74 : 233 - 253
  • [6] Sensitivity of Pareto solutions in multiobjective optimization
    Balbás, A
    Galperin, E
    Guerra, PJ
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 126 (02) : 247 - 264
  • [7] Sensitivity of Pareto Solutions in Multiobjective Optimization
    A. Balbás
    E. Galperin
    P. Jiménez. Guerra
    [J]. Journal of Optimization Theory and Applications, 2005, 126 : 247 - 264
  • [8] Duality and a Characterization of Pseudoinvexity for Pareto and Weak Pareto Solutions in Nondifferentiable Multiobjective Programming
    Arana-Jimenez, M.
    Ruiz-Garzon, G.
    Osuna-Gomez, R.
    Hernandez-Jimenez, B.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (02) : 266 - 277
  • [9] Duality and a Characterization of Pseudoinvexity for Pareto and Weak Pareto Solutions in Nondifferentiable Multiobjective Programming
    M. Arana-Jiménez
    G. Ruiz-Garzón
    R. Osuna-Gómez
    B. Hernández-Jiménez
    [J]. Journal of Optimization Theory and Applications, 2013, 156 : 266 - 277
  • [10] On a Sufficient Condition for Weak Sharp Efficiency in Multiobjective Optimization
    Bianchi, Monica
    Kassay, Gabor
    Pini, Rita
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (01) : 78 - 93