Constructing new APN functions and bent functions over finite fields of odd characteristic via the switching method

被引:0
|
作者
Guangkui Xu
Xiwang Cao
Shanding Xu
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] State Key Laboratory of Information Security,Department of Applied Mathematics
[3] Institute of Information Engineering,undefined
[4] Chinese Academy of Sciences,undefined
[5] Huainan Normal University,undefined
来源
关键词
PN function; APN function; -ary bent function; Switching method; 11T06; 94C10;
D O I
暂无
中图分类号
学科分类号
摘要
The switching method is a very powerful method to construct new APN functions and differentially 4-uniform permutations over finite fields of even characteristic. In this paper, using this method, we present several new constructions of infinite classes of nonpower APN functions and two new classes of bent functions in finite fields of odd characteristic.
引用
收藏
页码:155 / 171
页数:16
相关论文
共 50 条
  • [1] Constructing new APN functions and bent functions over finite fields of odd characteristic via the switching method
    Xu, Guangkui
    Cao, Xiwang
    Xu, Shanding
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2016, 8 (01): : 155 - 171
  • [2] New monomial bent functions over the finite fields of odd characteristic
    Helleseth, T
    Kholosha, A
    [J]. Proceedings of the IEEE ITSOC Information Theory Workshop 2005 on Coding and Complexity, 2005, : 72 - 76
  • [3] New Binomial Bent Functions over the Finite Fields of Odd Characteristic
    Helleseth, Tor
    Kholosha, Alexander
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1277 - 1281
  • [4] New Binomial Bent Functions Over the Finite Fields of Odd Characteristic
    Helleseth, Tor
    Kholosha, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4646 - 4652
  • [5] On a class of binomial bent functions over the finite fields of odd characteristic
    Zheng, Dabin
    Yu, Long
    Hu, Lei
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (06) : 461 - 475
  • [6] Monomial and quadratic bent functions over the finite fields of odd characteristic
    Helleseth, T
    Kholosha, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) : 2018 - 2032
  • [7] On a class of binomial bent functions over the finite fields of odd characteristic
    Dabin Zheng
    Long Yu
    Lei Hu
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2013, 24 : 461 - 475
  • [8] A Class of Binomial Bent Functions Over the Finite Fields of Odd Characteristic
    Jia, Wenjie
    Zeng, Xiangyong
    Helleseth, Tor
    Li, Chunlei
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (09) : 6054 - 6063
  • [9] Quadratic bent and semi-bent functions over finite fields of odd characteristic
    [J]. Zheng, Dabin, 1600, Chinese Institute of Electronics (23):
  • [10] Quadratic Bent and Semi-bent Functions over Finite Fields of Odd Characteristic
    Zheng Dabin
    Yu Long
    Hu Lei
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2014, 23 (04) : 767 - 772