Three-dimensional discrete element method simulation of core disking

被引:0
|
作者
Shunchuan Wu
Haoyan Wu
John Kemeny
机构
[1] University of Science and Technology Beijing,Key Laboratory of Ministry for Efficient Mining and Safety of Metal Mines
[2] University of Science and Technology Beijing,undefined
[3] Kunming University of Science and Technology,undefined
[4] University of Arizona,undefined
来源
Acta Geophysica | 2018年 / 66卷
关键词
Core disking; Discrete element method; Numerical simulation; Axial stress; Radial stress;
D O I
暂无
中图分类号
学科分类号
摘要
The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth’s crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.
引用
收藏
页码:267 / 282
页数:15
相关论文
共 50 条
  • [1] Three-dimensional discrete element method simulation of core disking
    Wu, Shunchuan
    Wu, Haoyan
    Kemeny, John
    ACTA GEOPHYSICA, 2018, 66 (03): : 267 - 282
  • [2] Three-dimensional discrete element simulation for granular materials
    Zhao, Dawei
    Nezami, Erfan G.
    Hashash, Youssef M. A.
    Ghaboussi, Jamshid
    ENGINEERING COMPUTATIONS, 2006, 23 (7-8) : 749 - 770
  • [3] Numerical simulation of landslides with the three-dimensional distance potential discrete element method
    滑坡过程数值模拟的三维距离势离散元法
    Zhao, Lanhao (zhaolanhao@hhu.edu.cn), 1600, China University of Mining and Technology (49): : 1094 - 1100
  • [4] Three-dimensional distance potential discrete element method for the numerical simulation of landslides
    Lanhao Zhao
    Xunnan Liu
    Jia Mao
    Linyu Shao
    Tongchun Li
    Landslides, 2020, 17 : 361 - 377
  • [5] Three-dimensional distance potential discrete element method for the numerical simulation of landslides
    Zhao, Lanhao
    Liu, Xunnan
    Mao, Jia
    Shao, Linyu
    Li, Tongchun
    LANDSLIDES, 2020, 17 (02) : 361 - 377
  • [6] Granular element method for three-dimensional discrete element calculations
    Lim, Keng-Wit
    Andrade, Jose E.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2014, 38 (02) : 167 - 188
  • [7] Three-dimensional discrete element method of analysis of clays
    Yao, M
    Anandarajah, A
    JOURNAL OF ENGINEERING MECHANICS, 2003, 129 (06) : 585 - 596
  • [9] Numerical simulation of rock fracture using three-dimensional extended discrete element method
    Matsuda, Y
    Iwase, Y
    EARTH PLANETS AND SPACE, 2002, 54 (04): : 367 - 378
  • [10] Numerical simulation of rock fracture using three-dimensional extended discrete element method
    Yuya Matsuda
    Yasuyuki Iwase
    Earth, Planets and Space, 2002, 54 : 367 - 378