The use of polynomial regression analysis with indicator variables for interpretation of mercury in fish data

被引:1
|
作者
Gilles Tremblay
Pierre Legendre
Jean-François Doyon
Richard Verdon
Roger Schetagne
机构
来源
Biogeochemistry | 1998年 / 40卷
关键词
binary variables; fish; impoundment; indicator variables; James Bay; mercury; polynomial regression; Québec; reservoirs;
D O I
暂无
中图分类号
学科分类号
摘要
Mercury levels in fish in reservoirs and natural lakes have been monitored on a regular basis since 1978 at the La Grande hydroelectric complex located in the James Bay region of Québec, Canada. The main analytical tools historically used were analysis of covariance (ANCOVA), linear regression of the mercury-to-length relationship and Student-Newman-Keuls (SNK) multiple comparisons of mean mercury levels. Inadequacy of linear regression (mercury-to-length relationships are often curvilinear) and difficulties in comparing mean mercury levels when regressions differ lead us to use polynomial regression with indicator variables.
引用
收藏
页码:189 / 201
页数:12
相关论文
共 50 条
  • [1] The use of polynomial regression analysis with indicator variables for interpretation of mercury in fish data
    Tremblay, G
    Legendre, P
    Doyon, JF
    Verdon, R
    Schetagne, R
    BIOGEOCHEMISTRY, 1998, 40 (2-3) : 189 - 201
  • [2] Regression models with data-based indicator variables
    Hendry, DF
    Santos, C
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2005, 67 (05) : 571 - 595
  • [3] ANALYSIS OF RADIOIMMUNOASSAY DATA - POLYNOMIAL REGRESSION
    SHASTRI, S
    BRIGHT, M
    WAGMAN, E
    CLINICAL CHEMISTRY, 1978, 24 (07) : 1290 - 1291
  • [4] Contrasting sliding polynomial smoothing and polynomial regression in data analysis
    Thomas, AW
    Snyder, WM
    Mills, WC
    Dillard, AL
    TRANSACTIONS OF THE ASAE, 1995, 38 (06): : 1935 - 1938
  • [5] Contrasting sliding polynomial smoothing and polynomial regression in data analysis
    USDA-Agricultural Research Service, Tifton, United States
    Trans ASAE, 6 (1935-1938):
  • [6] INTERPRETATION OF SUPPRESSION VARIABLES IN A MULTIPLE LINEAR REGRESSION ANALYSIS
    STEPHENSON, RA
    GEOGRAPHICAL ANALYSIS, 1971, 3 (01) : 99 - 100
  • [7] Local polynomial regression analysis of clustered data
    Chen, KN
    Jin, ZZ
    BIOMETRIKA, 2005, 92 (01) : 59 - 74
  • [9] Sensitivity Analysis of Exogenous Variables for Load Forecasting using Polynomial Regression
    Dab, Khansa
    Agbossou, Kodjo
    Cardenas, Alben
    Dube, Yves
    Kelouwani, Sousso
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 2560 - 2565
  • [10] Logistic regression and discriminant analysis: Use and interpretation
    Morgan, GA
    Vaske, JJ
    Gliner, JA
    Harmon, RJ
    JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2003, 42 (08): : 994 - 997