Enhancing strength-ductility trade-off in a NiFeCoAl0.21Ti0.21W0.04 high-entropy alloy by introducing γ′ precipitation

被引:0
|
作者
Chaojie Liang
Yunlai Deng
Chenglei Wang
Wenbo Zhu
机构
[1] Central South University,School of Materials Science and Engineering
[2] Central South University,Light Alloy Research Institute
[3] Guilin University of Electronic Technology,School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this study, we successfully prepared NiFeCoAl0.21Ti0.21W0.04 high-entropy alloy using vacuum arc melting technique and systematically investigated the mechanical properties, microstructure, and phase composition of the alloy using an electronic universal testing machine, EBSD, SEM, EDS, and TEM technologies. The results showed that the alloy can retain good ductility (~ 38%) while having high yield strength (~ 850 MPa). The alloy presented an FCC + L12 dual-phase structure, and the L12 precipitates are a nanoscale with an average size of ~ 63 nm and are highly coherent with the FCC matrix, which ensured excellent precipitation strengthening effect and thus high strength. We have calculated the contribution of the strengthening mechanisms present in the alloy to the strength of the alloy, and the results show that precipitation strengthening dominates among all strengthening mechanisms. At the same time, the formation of annealed twins acts as a barrier to grain growth during heat treatment, which also ensures good fine-grain strengthening. In conclusion, we have obtained an excellent strength-ductility trade-off relationship by introducing a nano-precipitation phase in the alloy that is coherent with the matrix, which is expected to guide the development of higher entropy alloys with superior properties.
引用
收藏
页码:12083 / 12096
页数:13
相关论文
共 50 条
  • [1] Enhancing strength-ductility trade-off in a NiFeCoAl0.21Ti0.21W0.04 high-entropy alloy by introducing γ′ precipitation
    Liang, Chaojie
    Deng, Yunlai
    Wang, Chenglei
    Zhu, Wenbo
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (29) : 12083 - 12096
  • [2] Evading the strength-ductility trade-off dilemma in high-entropy alloy by lamellar structure
    Wang, Weiqi
    Qu, Lidan
    Lu, Yunzhuo
    Materials Letters, 2025, 380
  • [3] Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure
    Wu, S. W.
    Wang, G.
    Wang, Q.
    Jia, Y. D.
    Yi, J.
    Zhai, Q. J.
    Liu, J. B.
    Sun, B. A.
    Chu, H. J.
    Shen, J.
    Liaw, P. K.
    Liu, C. T.
    Zhang, T. Y.
    ACTA MATERIALIA, 2019, 165 : 444 - 458
  • [4] Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening
    Huang, Dong
    Zhuang, Yanxin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 108 : 125 - 132
  • [5] Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening
    Dong Huang
    Yanxin Zhuang
    Journal of Materials Science & Technology, 2022, (13) : 125 - 132
  • [6] Ordered nitrogen complexes overcoming strength-ductility trade-off in an additively manufactured high-entropy alloy
    Zhao, Dandan
    Yang, Quan
    Wang, Dawei
    Yan, Ming
    Wang, Pei
    Jiang, Mingguang
    Liu, Changyong
    Diao, Dongfeng
    Lao, Changshi
    Chen, Zhangwei
    Liu, Zhiyuan
    Wu, Yuan
    Lu, Zhaoping
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (15) : 532 - 542
  • [7] Chemical inhomogeneities in high-entropy alloys help mitigate the strength-ductility trade-off
    Ma, Evan
    Liu, Chang
    PROGRESS IN MATERIALS SCIENCE, 2024, 143
  • [8] Breaking the strength-ductility trade-off via heterogeneous structure in FeCoCrNiMo0.2 high-entropy alloy
    Chen, Fei
    Liu, Fei
    Tan, Yuan-Biao
    Shi, Wei
    Xiang, Song
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 : 265 - 275
  • [9] Addressing the strength-ductility trade-off in a thermomechanical-processed high entropy alloy
    Radi, Amin
    Isil, Canay
    Seyedmohammadi, S. Vegar
    Kim, Hyoung Seop
    Yapici, Guney Guven
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [10] Breakthrough the strength-ductility trade-off in a high-entropy alloy at room temperature via cold rolling and annealing
    Zhang, Wei
    Ma, Zhichao
    Zhao, Hongwei
    Ren, Luquan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 800