Einstein metrics in projective geometry

被引:0
|
作者
A. Čap
A. R. Gover
H. R. Macbeth
机构
[1] University of Vienna,Faculty of Mathematics
[2] The University of Auckland,Department of Mathematics
[3] Australian National University,Mathematical Sciences Institute
[4] Princeton University,Department of Mathematics
来源
Geometriae Dedicata | 2014年 / 168卷
关键词
Projective differential geometry; Einstein metrics; Conformal differential geometry; Primary 53B10; 53A20; 53C29; Secondary 35Q76; 53A30;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that pseudo–Riemannian metrics in the projective class of a given torsion free affine connection can be obtained from (and are equivalent to) the solutions of a certain overdetermined projectively invariant differential equation. This equation is a special case of a so-called first Bernstein–Gelfand–Gelfand (BGG) equation. The general theory of such equations singles out a subclass of so-called normal solutions. We prove that non-degenerate normal solutions are equivalent to pseudo–Riemannian Einstein metrics in the projective class and observe that this connects to natural projective extensions of the Einstein condition.
引用
收藏
页码:235 / 244
页数:9
相关论文
共 50 条
  • [1] Einstein metrics in projective geometry
    Cap, A.
    Gover, A. R.
    Macbeth, H. R.
    [J]. GEOMETRIAE DEDICATA, 2014, 168 (01) : 235 - 244
  • [2] Detecting Einstein geodesics: Einstein metrics in projective and conformal geometry
    Gover, A. Rod
    Macbeth, Heather R.
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 33 : 44 - 69
  • [3] Projective compactifications and Einstein metrics
    Cap, Andreas
    Gover, A. Rod
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 717 : 47 - 75
  • [4] Weighted extremal Kahler metrics and the Einstein-Maxwell geometry of projective bundles
    Apostolov, Vestislav
    Maschler, Gideon
    Tonnesen-Friedman, Christina W.
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (04) : 689 - 744
  • [5] Einstein on involutions in projective geometry
    Tilman Sauer
    Tobias Schütz
    [J]. Archive for History of Exact Sciences, 2021, 75 : 523 - 555
  • [6] Einstein on involutions in projective geometry
    Sauer, Tilman
    Schutz, Tobias
    [J]. ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2021, 75 (05) : 523 - 555
  • [7] PROJECTIVE INVARIANT METRICS FOR EINSTEIN SPACES
    KOBAYASHI, S
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1979, 73 (MAR) : 171 - 174
  • [8] Some Examples of Projective and c-projective Compactifications of Einstein Metrics
    Maciej Dunajski
    A. Rod Gover
    Alice Waterhouse
    [J]. Annales Henri Poincaré, 2020, 21 : 1113 - 1133
  • [9] Some Examples of Projective and c-projective Compactifications of Einstein Metrics
    Dunajski, Maciej
    Rod Gover, A.
    Waterhouse, Alice
    [J]. ANNALES HENRI POINCARE, 2020, 21 (04): : 1113 - 1133
  • [10] On generalized Einstein metrics in Finsler geometry
    Yang, Guojun
    Cheng, Xinyue
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2009, 74 (1-2): : 171 - 185