For Lax-pair isospectral deformations whose associated spectrum, for given initial data, consists of the disjoint union of a finitely denumerable discrete spectrum (solitons) and a continuous spectrum (continuum), the matrix Riemann–Hilbert problem approach is used to derive the leading-order asymptotics as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left| t \right| \to \infty \left( {{x \mathord{\left/ {\vphantom {x t}} \right. \kern-\nulldelimiterspace} t} \sim \mathcal{O}\left( 1 \right)} \right)$$
\end{document} of solutions \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\left( {u = u\left( {x,t} \right)} \right)$$
\end{document} to the Cauchy problem for the defocusing nonlinear Schrödinger equation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\text{D}}_f$$
\end{document}NLSE), \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$${\text{i}}\partial _x^{\text{2}} u + \partial _x^{\text{2}} u - 2\left( {\left| u \right|^2 - 1} \right)u = 0$$
\end{document}, with finite-density initial data