On evolutionary problems with a-priori bounded gradients

被引:0
|
作者
Miroslav Bulíček
David Hruška
Josef Málek
机构
[1] Charles University,Faculty of Mathematics and Physics, Mathematical Institute
[2] Leipzig University,Faculty of Mathematics and Computer Science, Institute of Mathematics
关键词
35K59; 35K92; 35D30; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear evolutionary partial differential equation that can be viewed as a generalization of the heat equation where the temperature gradient is a priori bounded but the heat flux provides merely L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-coercivity. Applying higher differentiability techniques in space and time, choosing a special weighted norm (equivalent to the Euclidean norm in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}), incorporating finer properties of integrable functions and flux truncation techniques, we prove long-time and large-data existence and uniqueness of weak solution, with an L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-integrable flux, to an initial spatially-periodic problem for all values of a positive model parameter. If this parameter is smaller than 2/(d+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2/(d+1)$$\end{document}, where d denotes the spatial dimension, we obtain higher integrability of the flux. As the developed approach is not restricted to a scalar equation, we also present an analogous result for nonlinear parabolic systems in which the nonlinearity, being the gradient of a strictly convex function, gives an a-priori L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-bound on the gradient of the unknown solution.
引用
收藏
相关论文
共 50 条