Redox Mechanism of S-Nitrosothiol Modulation of Neuronal CaV3.2 T-Type Calcium Channels

被引:0
|
作者
Jeonghan Lee
Michael T. Nelson
Kirstin E. Rose
Slobodan M. Todorovic
机构
[1] Inje University,Department of Anesthesiology and Pain Medicine, College of Medicine, Busan Paik Hospital
[2] University of Virginia Health System,Department of Anesthesiology
[3] University of Virginia Health System,Department of Neuroscience
[4] University of Virginia Health System,Neuroscience Graduate Program
来源
Molecular Neurobiology | 2013年 / 48卷
关键词
T-type calcium channel; -nitrosoglutathione; -nitroso-; -acetyl-penicillamine;
D O I
暂无
中图分类号
学科分类号
摘要
T-type calcium channels in the dorsal root ganglia (DRG) have a central function in tuning neuronal excitability and are implicated in sensory processing including pain. Previous studies have implicated redox agents in control of T-channel activity; however, the mechanisms involved are not completely understood. Here, we recorded T-type calcium currents from acutely dissociated DRG neurons from young rats and investigated the mechanisms of CaV3.2 T-type channel modulation by S-nitrosothiols (SNOs). We found that extracellular application of S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-penicillamine rapidly reduced T-type current amplitudes. GSNO did not affect voltage dependence of steady-state inactivation and macroscopic current kinetics of T-type channels. The effects of GSNO were abolished by pretreatment of the cells with N-ethylmaleimide, an irreversible alkylating agent, but not by pretreatment with 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one, a specific soluble guanylyl cyclase inhibitor, suggesting a potential effect of GSNO on putative extracellular thiol residues on T-type channels. Expression of wild-type CaV3.2 channels or a quadruple Cys-Ala mutant in human embryonic kidney cells revealed that Cys residues in repeats I and II on the extracellular face of the channel were required for channel inhibition by GSNO. We propose that SNO-related molecules in vivo may lead to alterations of T-type channel-dependent neuronal excitability in sensory neurons and in the central nervous system in both physiological and pathological conditions such as neuronal ischemia/hypoxia.
引用
收藏
页码:274 / 280
页数:6
相关论文
共 50 条
  • [1] Redox Mechanism of S-Nitrosothiol Modulation of Neuronal CaV3.2 T-Type Calcium Channels
    Lee, Jeonghan
    Nelson, Michael T.
    Rose, Kirstin E.
    Todorovic, Slobodan M.
    MOLECULAR NEUROBIOLOGY, 2013, 48 (02) : 274 - 280
  • [2] Cav3.2 T-type calcium channels and inflammatory pain
    Kerckhove, N.
    Boudieu, L.
    Carvalho, F.
    Alloui, A.
    Uebele, V.
    Renger, J.
    Gelot, A.
    Bourinet, E.
    Mallet, C.
    Eschalier, A.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2013, 27 : 117 - 117
  • [3] Mice mechanoreceptors are modulated by Cav3.2 T-type calcium channels
    Bolanos-Jimenez, Rodrigo
    Escamilla-Ocanas, Cesar
    Martinez-Menchaca, Hector
    Rivera-Silva, Gerardo
    JOURNAL OF PHYSIOLOGY-LONDON, 2012, 590 (01): : 7 - 7
  • [4] Selective sensitivity of CaV3.2 T-type calcium channels to ethanol
    Shan, H. Q.
    Graef, J. D.
    Godwin, D. W.
    ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2008, 32 (06) : 28A - 28A
  • [5] Cav3.2 T-type calcium channels control acute itch in mice
    Gadotti, Vinicius M.
    Kreitinger, Joanna M.
    Wageling, Nicholas B.
    Budke, Dylan
    Diaz, Philippe
    Zamponi, Gerald W.
    MOLECULAR BRAIN, 2020, 13 (01)
  • [6] A molecular determinant of nickel inhibition in Cav3.2 T-type calcium channels
    Kang, HW
    Park, JY
    Jeong, SW
    Kim, JA
    Moon, HJ
    Perez-Reyes, E
    Lee, JH
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (08) : 4823 - 4830
  • [7] Cav3.2 T-type calcium channels control acute itch in mice
    Vinicius M. Gadotti
    Joanna M. Kreitinger
    Nicholas B. Wageling
    Dylan Budke
    Philippe Diaz
    Gerald W. Zamponi
    Molecular Brain, 13
  • [8] Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability
    Voisin, Tiphaine
    Bourinet, Emmanuel
    Lory, Philippe
    JOURNAL OF PHYSIOLOGY-LONDON, 2016, 594 (13): : 3561 - 3574
  • [9] Cav3.2 T-Type Calcium Channels Are Physiologically Mandatory for the Auditory System
    Lundt, Andreas
    Seidel, Robin
    Soos, Julien
    Henseler, Christina
    Mueller, Ralf
    Bakki, Maheshwar
    Arshaad, Muhammad Imran
    Ehninger, Dan
    Hescheler, Juergen
    Sachinidis, Agapios
    Broich, Karl
    Wormuth, Carola
    Papazoglou, Anna
    Weiergraeber, Marco
    NEUROSCIENCE, 2019, 409 : 81 - 100
  • [10] Targeting T-type/CaV3.2 channels for chronic pain
    Cai, Song
    Gomez, Kimberly
    Moutal, Aubin
    Khanna, Rajesh
    TRANSLATIONAL RESEARCH, 2021, 234 : 20 - 30