Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\bf R}^{n}$\end{document}

被引:0
|
作者
Yoshihiro Mizuta
Eiichi Nakai
Takao Ohno
Tetsu Shimomura
机构
[1] Hiroshima University,Department of Mathematics, Graduate School of Science
[2] Ibaraki University,Department of Mathematics
[3] Oita University,Faculty of Education and Welfare Science
[4] Hiroshima University,Department of Mathematics, Graduate School of Education
关键词
Maximal functions; Musielak-Orlicz-Morrey space of variable exponent; Riesz potential; Sobolev embeddings; Sobolev’s inequality; 31B15; 46E30;
D O I
10.1007/s13163-011-0074-7
中图分类号
学科分类号
摘要
Our aim in this paper is to deal with Sobolev embeddings for Riesz potentials of variable order with functions in variable exponent Musielak-Orlicz-Morrey spaces.
引用
收藏
页码:413 / 434
页数:21
相关论文
共 50 条