Quantitative rational approximation on spheres

被引:0
|
作者
Mahbub Alam
Anish Ghosh
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
来源
Selecta Mathematica | 2022年 / 28卷
关键词
37A17; 11J70; 11K60;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a quantitative theorem for Diophantine approximation by rational points on spheres. Our results are valid for arbitrary unimodular lattices and we further prove ‘spiraling’ results for the direction of approximates. These results are quantitative generalizations of the Khintchine-type theorem on spheres proved in Kleinbock and Merrill (Israel J Math 209:293–322, 2015).
引用
收藏
相关论文
共 50 条
  • [1] Quantitative rational approximation on spheres
    Alam, Mahbub
    Ghosh, Anish
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (05):
  • [2] Rational approximation on spheres
    Dmitry Kleinbock
    Keith Merrill
    Israel Journal of Mathematics, 2015, 209 : 293 - 322
  • [3] Rational approximation on spheres
    Kleinbock, Dmitry
    Merrill, Keith
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 209 (01) : 293 - 322
  • [4] Effective rational approximation on spheres
    Ouaggag, Zouhair
    JOURNAL OF NUMBER THEORY, 2023, 249 : 183 - 208
  • [5] Approximation by continuous rational maps into spheres
    Kucharz, Wojciech
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (08) : 1555 - 1569
  • [6] RATIONAL HOMOLOGY SPHERES
    LOFFLER, P
    MATHEMATISCHE ANNALEN, 1980, 249 (02) : 141 - 152
  • [7] RATIONAL APPROXIMATION
    ERDOS, P
    REDDY, AR
    ADVANCES IN MATHEMATICS, 1976, 21 (01) : 78 - 109
  • [8] Rational approximation on A∞(Ω)
    Falco, Javier
    Nestoridis, Vassili
    STUDIA MATHEMATICA, 2019, 248 (01) : 93 - 107
  • [9] RATIONAL APPROXIMATION
    FREUD, G
    REDDY, AR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A469 - A469
  • [10] Adelic approximation on spheres
    Gaudron, Eric
    COMBINATORICS AND NUMBER THEORY, 2024, 13 (03):